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Privacy and Security 
Foundations
for training scalable decentralized AI
Training more powerful AI and machine learning models requires access to large amounts of data. But 

much data is unavailable due to security, privacy, and compliance concerns. Federated learning (FL) shows 

promise for scaling decentralized AI training on private data but comes with some privacy vulnerabilities. 

Combining FL with Multi-party Computation (MPC) and Fully Homomorphic Encryption (FHE) can mitigate 

these vulnerabilities to scale AI training with strong privacy guarantees.
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Introduction
The Data Dilemma for Scalable AI

Yet some of the most valuable and useful data, particularly in compliance-heavy/

privacy-sensitive industries (medicine, finance, enterprise secrets, smart cities), 

have been difficult to use due to privacy concerns.  Emerging tools for protecting 

the security and privacy of data wil l  be essential for unlocking access to more 

valuable and useful data sets that require privacy. This includes a range of 

data types relating to health, finance, and business secrets, which can contain 

personally identifiable information (PII). 

Privacy-Enhancing Technologies (PETs) is an emerging field that broadly ensures 

the security and privacy of this data. Privacy-Preserving Machine Learning (PPML) 

is a subset of PETs that safeguards the security and confidentiality of this data 

while using AI models.  PPML is crucial for leveraging recent progress and the 

excitement in using neural networks in generative AI (GenAI), and other neural 

network types such as Convolutional Neural Networks (CNN) and Recurrent Neural 

Networks (RNNs). 

A variety of PPML techniques are being explored. Some, such as synthetic data 

and secure enclaves, are seeing some traction in the market but lack the uti l ity 

and/or privacy guarantees. Federated learning (FL) shows tremendous promise for 

decentralizing AI training, but it can result in new privacy vulnerabil ities. 

Recent progress in bolstering FL with Multi-Party Computation (MPC) and Fully 

Homomorphic Encryption (FHE) shows promise for building the foundation for 

scalable and trustworthy AI. Several solutions developed by TII and others are 

building frameworks and platforms to support the widespread adoption of these 

new techniques. Ongoing improvements in these techniques wil l  be essential for 

creating the privacy and security foundations for the next generation of AI. 

There is a growing need to train AI without compromising privacy, 

compliance, trust,  and  accuracy. Access to increasingly larger 

volumes of data and tools for processing has been essential 

in driving advances in training artificial intell igence (AI).  The 

Internet of Things (IoT) is also making it easier to aggregate a 

much larger variety and volume of data for physical AI. Public 

and private cloud services are frequently used to aggregate and 

process data from many parties to train AI models.
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From PETs to PPML 
The term Privacy Enhancing Technologies (PETs) was first coined in 1995 by 
researchers from the Dutch Protection Authority to characterize technologies 
that enforce privacy measures. Early work focused on aspects such as data 
minimization, anonymization, secure communication channels, and identity 
management systems. 

These efforts focused on protecting data at rest and in transit,  but not on how it 

was processed. This spurred the growth of the confidential computing field, which 

focuses on private data processing. It’s application to Machine Learning came to be 

known as Privacy-Preserving Machine Learning (PPML). This work involved finding new 

ways to repurpose confidential computing techniques to train AI models and run ML 

algorithms without exposing sensitive data.

Several private data processing techniques have been applied to PPML.  Examples 

include Differential Privacy (DP), Trusted Execution Environments (TEE), synthetic data, 

and data anonymization techniques. These techniques mitigate privacy concerns by 

a) adding random noise to datasets; b) restricting data processing to secure enclaves; 

c) transforming raw data into random-looking data with similar statistical properties; 

and d) removing personally identifiable information (PII).  However, these techniques 

face l imitations owing to questionable privacy guarantees, l imited uti l ity or scalabil ity 

issues. MPC and FHE go a step further by providing privacy without reducing uti l ity.
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The promise of Federated Learning (FL)
More recently, FL has emerged as a promising technology to address these l imitations 

by decentralizing training without requiring data movement. It stands out compared 

to training on synthetic data, because FL is trained on actual data, which improves the 

uti l ity and, consequently, the accuracy of the AI models. 

In FL, models are trained across decentralized devices using local data, and only 

gradients/updates are shared. This keeps data local,  reducing privacy risks. The devices 

could be mobile phones, IoT equipment, cars, or trusted staging servers that aggregate 

data from smaller devices or across an organization.  

The process starts with the central server initializing the model and sending it to 

clients. Each client trains the model on its local data and sends the updated model 

parameters to the central server. The central server then aggregates the updates to 

improve the global model. 

1 H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-Efficient Learning of Deep Networks from 

Decentralized Data,” Jan. 26, 2023, arXiv: arXiv:1602.05629. doi:  10.48550/arXiv.1602.05629.

Google researchers introduced the core ideas 

behind FL in 2016 in a seminal paper that 

explained a practical method for iteratively 

learning from decentralized data while reducing 

the communication overhead.1 The first 

implementation enabled Google to enhance 

the accuracy of the Google Android keyboard 

predictive text app without requiring the sharing 

of raw user data. Researchers subsequently 

explored how this foundation could improve 

models in healthcare, finance, and IoT use cases. 

Since then, researchers have explored a variety 

of algorithms to address several challenges, such 

as working with non-independent and identically 

distributed (Non-IID) data sets, improving 

communication efficiency, and enhancing fairness. 

They have also built several FL frameworks, such 

as TensorFlow Federated, PySyft,  and Flower, to 

streamline the development process. 
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Mitigating inference attacks
In the early days, FL was thought to be secure against privacy attacks. However, 

researchers have discovered various inference attack vulnerabil ities. 

In a Membership Inference Attack (MIA), an adversary attempts to determine whether 

a specific data record was included in the training dataset of a machine learning 

model.  The attacker doesn’t necessari ly want to reconstruct the entire training dataset, 

but rather to ascertain the presence or absence of a particular individual’s data.  In a 

model used to predict a medical condition, merely identifying that a patient’s records 

were included could reveal sensitive information about that patient’s medical status. 

In a Source Inference Attack (SIA), a hacker takes control of the aggregating server to 

determine which specific cl ient or data source contributed a particular data record to 

the global model’s training. While a MIA tells you if a record was used, a SIA tells you 

who provided it. 

MPC and FHE can improve 
the privacy guarantees of FL 
against these types of attacks 
without compromising the 
utility of AImodels. 
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Mitigating inference attacks
MPC could securely aggregate the client model updates without the server seeing 

individual updates, thus hindering server-side MIA based on raw updates. In MPC, 

multiple parties compute in a distributive fashion over secret-shared data. None of the 

parties can see any part of the data, not even a single item. The computation is fully 

decentralized but faces communication latency constraints.  

FHE enables computation directly on encrypted data, which confounds the abil ity to 

conduct inference attacks. However, it is computationally expensive and increases 

communication overhead. There are many factors that contribute to the increased 

computational overhead including the impact of processing encrypted data that 

is much larger than raw data and the use of more complex encrypted processing 

operations that emulate the original ones.
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FL is only used for training ML models. Other 

approaches are required to protect the privacy of 

inference in ML systems using MPC, FHE, or TEEs. 

Inference is a separate problem that requires new 

tradeoffs and technical considerations, beyond the 

scope of this paper. 

Frameworks and Toolkits
Researchers are actively exploring ways that MPC and FHE could be used to bolster FL 

privacy guarantees or could be used on their own as part of PPML workflows. 

For example, TII’s PetalGuard2 is a l ibrary that supports the use of MPC for federated 

learning. It provides a universal framework compatible with any model and scalable to 

any model size, including LLMs. It is currently available on AWS.

Examples of MPC frameworks that can be adapted 

to inference include TII’s FANNG,3  Meta’s CrypTen 

and Microsoft’s CryptoNets. These frameworks are 

good for smaller models but not large ones (e.g. , 

bi l l ions of parameters). 

TII’s Versatile Encrypted Inference Library (VEIL) 

is a platform for inferencing using FHE. It’s been 

tested in mobile skin health and spam detection 

applications. A compiler can transform some existing 

ML models into equivalents compatible with VEIL. 

Ongoing research and development are expanding 

the type and scale of ML applications it wil l  support.  

Full  details on VEIL are expected later in 2025. 

2 [1] “Petal Guard |  Home.” Accessed: Jun. 10, 2025. [Online]. Available: https://petalguard.ti i .ae/

3 N. Aaraj et al . ,  “FANNG-MPC: Framework for Artificial Neural Networks and Generic MPC,” 2023, 2023/1918. Accessed: Jun. 10, 

2025. [Online]. Available: https://eprint.iacr.org/2023/1918



8

Research Directions and Open Problems
Both MPC and FHE techniques are being investigated for use on their own in the 

long run. However, they both incur significant overhead in computation and/or 

communication, which l imits their practical adoption for large-scale deployments in 

the short run.  

MPC limitations are often related to bandwidth and communication interactions, 

not just computational power. MPC tends to have high communication overhead due 

to the protocols’  iterative nature. Newer designs can minimize this by using more 

computation for preprocessing. Outsourcing this to edge servers can help reduce 

l imitations on individual devices. 

FHE complexity remains a significant challenge despite considerable progress. Existing 

approaches require the use of complex encryption algorithms and large ciphertext 

sizes that can expand data several orders of magnitude during the encryption process. 

These issues can l imit the performance or feasibil ity for many potential use cases.  

Hybrid FHE (combining conventional and homomorphic encryption, also known as 

transcription) is a potential solution for this bandwidth issue but comes at the cost of 

increasing computational complexity.

The FHE community is working on standardizing FHE and establishing a common 

implementation framework. This includes the development of tools for setting up FHE 

parameters,4, 5, 6, the Homomorphic Encryption Standard,  the creation of open FHE 

libraries,8 and compilers for optimizing high-level programs into FHE implementations. 

FHE progress wil l  also improve with hardware acceleration and new designs. Duality 

researchers have found that FPGA and GPU optimization techniques are already 

able to improve FHE performance by two orders of magnitude and predict that 

special-purpose application-specific integrated circuit (ASIC) chips could enhance 

performance by four orders of magnitude compared to multi-core CPUs. Efforts l ike 

OpenFHE wil l  make it easier to write the algorithms once and then port them to new 

hardware as it becomes available.9

 

These kinds of improvements and efforts to combine MPC and/or FHE with FL wil l 

help foster the development of robust, scalable, and practical solutions that can 

enhance the security and privacy of the next generation of AI without compromising 

performance. 

4 Bergerat, L. ,  Boudi,  A. ,  Bourgerie, Q. et al .  (2022). Parameter optimization & larger precision for (T) FHE. Cryptology ePrint 

Archive. 5 Biasioli ,  B. ,  Marcolla, C. ,  Calderini,  M.,  and Mono, J.  (2023). Improving and automat- ing BFV parameters selection: an 

average-case approach. Cryptology ePrint Archive, Paper 2023/600. 6 Mono, J. ,  Marcolla, C. ,  Land, G. et al .  (2023). Finding and 

evaluating parameters for BGV. International Conference on Cryptology in Africa - AFRICACRYPT 202. 7 Albrecht, M.R.,  Chase, M., 

Chen, H. et al .  (2018). Homomorphic Encryption Security

Standard. Technical Report.  Toronto, Canada: HomomorphicEncryption.org. 8 “OpenFHE.org – OpenFHE – Open-Source Fully 

Homomorphic Encryption Library.” Accessed: Jun. 09, 2025. [Online]. Available: https://openfhe.org/. 9 A. A. B. Rohloff David Bruce 

Cousins, Yuriy Polyakov, and Kurt,  “Hardware Acceleration of Fully Homomorphic Encryption,” Duality Technologies. Accessed: 

Jun. 09, 2025. [Online]. Available: https://dualitytech.com/blog/hardware-acceleration-of-fully-homomorphic-encryption-making-

privacy-preserving-machine-learning-practical/
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Conclusion
The Road Ahead for Private AI

As AI systems continue to permeate sensitive domains l ike healthcare, finance, smart 

cities, and critical infrastructure, privacy wil l  no longer be a desirable feature. It wil l  be 

a regulatory and ethical requirement. 

A key part of this wil l  be scaling PPML to support large models. Today’s frontier 

models,  such as transformer-based GenAI systems and deep reinforcement learning 

agents, are often too large or resource-intensive to be trained or queried using existing 

PPML schemes. This shift wil l  require new distributed architectures, better model 

partitioning and smarter scheduling to make privacy-by-design feasible for larger 

models.

Edge inference is another critical milestone. Federated learning has made great strides 

in improving private training on client devices. However, performing private inference, 

especially using techniques l ike FHE, remains compute and bandwidth-intensive. 

Lightweight schemes that allow privacy-preserving inference on constrained devices 

wil l  be necessary for real-world adoption in mobile health, autonomous vehicles, and 

embedded systems.

In addition, trust models wil l  also need to evolve beyond centralized clouds. Private AI 

infrastructure wil l  increasingly distribute compute across peers, edge nodes, and 

semi-trusted aggregators. This wil l  be critical for safeguarding privacy, particularly in 

cross-border and multi-stakeholder environments.

The vision for decentralized private AI is to protect data and enable a new class of 

AI applications that are inherently trustworthy, compliant, and secure. Collaboration 

across researchers, vendors, governments and other stakeholders wil l  be required to 

realize this vision. The future of training decentralized, secure AI depends on sustained 

PETs innovation, with promising developments underway at TII and across the research 

community. 
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