N
Check for
Updates

Assert-O: Context-based Assertion Optimization using LLMs

Samit S. Miftah
samit.miftah@utdallas.edu
University of Texas at Dallas
Richardson, Texas, USA

Hyunmin Kim
hyunmin kim@tii.ae
Technology Innovation Institute (TII)
Abu Dhabi, UAE

ABSTRACT

Modern computing relies on System-on-Chips (SoCs), integrating
IP cores for complex functions. However, this integration introduces
vulnerabilities, necessitating rigorous hardware security validation.
The effectiveness of this validation depends on the security proper-
ties embedded in the SoC. Recent studies explore large language
models (LLMs) for generating security properties, but these may not
be directly optimized for validation. Manual intervention remains
necessary to reduce their number. Security validation methods that
rely on human expertise are not scalable as they are time-intensive
and prone to human error. In order to address these issues, we
introduce Assert-O, an automated framework designed to derive
security properties from SoC documentation and optimize the gen-
erated properties. It also ranks the properties based on the security
vulnerabilities they are associated with, thereby streamlining the
validation process. Our method leverages hardware documenta-
tion to initially create security properties, which are subsequently
consolidated and prioritized based on their level of criticality. This
approach serves to expedite the validation procedure. Assert-O is
trained on documentation of six IPs from OpenTitan. To evaluate
our proposed method, Assert-O was assessed on five other mod-
ules from OpenTitan. Assert-O was able to generate 183 properties,
which was further optimized to reduce them to 138 properties. Sub-
sequently, these properties were ranked based on their impact on
the security of the overall system.

KEYWORDS

Large Language Models, Hardware Verification, Hardware Security

ACM Reference Format:

Samit S. Miftah, Amisha Srivastava, Hyunmin Kim, and Kanad Basu. 2024.
Assert-O: Context-based Assertion Optimization using LLMs. In Great Lakes
Symposium on VLSI 2024 (GLSVLSI °24), June 12-14, 2024, Clearwater, FL, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3649476.3660378

This work is licensed under a Creative Commons Attribution International
4.0 License.

GLSVLSI 24, June 12—14, 2024, Clearwater, FL, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0605-9/24/06
https://doi.org/10.1145/3649476.3660378

233

Amisha Srivastava
amisha.srivastava@utdallas.edu
University of Texas at Dallas
Richardson, Texas, USA

Kanad Basu
kanad.basu@utdallas.edu
University of Texas at Dallas
Richardson, Texas, USA

1 INTRODUCTION

Integrated circuit (IC) applications encompass a broad range, span-
ning from small IoT devices to large, complex multicore proces-
sors or System-on-Chips (SoCs). In practice, these are designed in
hardware description languages (HDL), such as VHDL, Verilog or
SystemVerilog at the register transfer level (RTL). However, while
designing these ICs, especially the large and complex designs, bugs
are introduced which can potentially compromise the security of
these devices [5]. Every design undergoes rigorous verification to
ensure security, robustness and reliability.

One of the most common verification techniques used to ver-
ify the properties of these RTL designs is Assertion-Checking [20].
This method utilizes specifications coded into the RTL design of
hardware intellectual properties (IPs) to assert the properties and
thereby verify them. The focus of each assertion is to verify indi-
vidual functions and critical logic in the hardware. However, the
correctness and coverage of this verification method relies on two
key factors: (a) defining properties, and (b) generating correct as-
sertions for the said properties. Defining properties for specific
designs under tests (DUTs) poses a challenging task. Conventional
approaches rely on designers’ experience and proficiency, which
are both time-intensive and prone to human errors, thus lacking ro-
bustness. The assertions developed should comprehensively cover
the defined properties. Generating these assertions for each DUT
is a demanding task that requires the developer’s expertise.

Security assertions play a crucial role in identifying and mitigat-
ing security vulnerabilities, while functional behavior assertions
validate the proper functioning of the DUT. The coverage of a func-
tional behavioral check may be adequate for a DUT, but security
verification cannot be considered satisfactory by coverage alone.
Ensuring security requires knowledge of the DUT, its use case, and
the potential weaknesses they possess. Prominent organizations
like RISC-V, MSP, Arduino, etc., offer comprehensive documenta-
tion that details the functionalities, use cases, and threat models for
their design IPs. Hence, developing a methodology for generating
security assertions from DUT documentation is crucial to enhance
the robustness and expedite the security verification process. Given
comprehensive documentation, we posit that assertions for a DUT
can be generated using the process depicted in Figure 1. By using
large language models (LLMs), the documentation for the DUT
can be analyzed and be processed to define properties and thereby
generate assertion files that can be bound to the RTL designs. To
this end, we aim to develop a natural language-based framework
that can extract information from the documentation provided with

https://orcid.org/0009-0009-7533-376X
https://orcid.org/0009-0008-9231-6331
https://orcid.org/0009-0008-1549-9277
https://orcid.org/0000-0002-6431-7512
https://doi.org/10.1145/3649476.3660378
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649476.3660378
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649476.3660378&domain=pdf&date_stamp=2024-06-12

Defining (Generating
Properties

Assertion files

Design IDocumentation S
Processing

Documentation

Properties

Property 1
Property 2
Property 3

Figure 1: Assertion generation from design documentation.

the design, define security properties, and subsequently generate
assertions files (*.sva files) written in SystemVerilog. These files can
then be bound to the DUTs to apply security assertion checking.
In this paper, we propose, Assert-O, an LLM-based assertion
generation framework that can generate assertions from hardware
documentation and optimize them, aiming to minimize overhead
in security verification processes reliant on assertion checks. To
initiate the process, a dataset is constructed to fine-tune the “Falcon-
40B" [2] pre-trained open-source model for generating properties.
Subsequently, the model undergoes training to prioritize assertions,
facilitating efficient overhead optimization. The framework consol-
idates properties to enhance comprehensiveness, followed by the
computation of CVSS scores for severity assessment based on the
IP type. Contributions of this paper can be summarized as follows:

e We propose an open-source LLM-based framework that can
generate security properties, optimize them, and assign a
severity level for the generated properties. This enables au-
tomating and optimizing the verification process.

e We compile a dataset to incorporate domain-specific knowl-
edge into open-source models in order to generate properties
and assertions.

o We further implement a merging methodology that merges
properties based on the operation and registers names.

e When evaluated on modules from OpenTitan, Assert-O suc-
cessfully extracted 183 properties, which were then opti-
mized and reduced to 138, showcasing a reduction of 24.6%.

2 BACKGROUND

This section provides background on hardware security verification
and large language models which are required in our proposed
method, Assert-O.

2.1 Hardware Security and Verification

A plethora of techniques have been developed to ensure the se-
curity of software applications, either through the source code or
binary operations [5]. However, the availability of commercial EDA
tools, which are specifically crafted for hardware security, is rare.
Hence, researchers have recently focused on developing tools and
methodologies to ensure hardware security. Next, we will provide
an overview of recent hardware security verification approaches
and hardware design documentation.

Various hardware verification techniques have been proposed, in-
cluding formal verification, information flow tracking, and fuzzing.
These techniques either use a golden reference model (GRM) or
assertions to verify the target DUV. While GRM-based verification
is a widely used approach, it does not provide specific protocol
checking. Furthermore, in the case of security verification, GRM-
based techniques are inefficient. This is due to the construction of

234

GRMs being focused primarily on the functional correctness of the
DUV. Therefore, it is a common practice to use property definition
in the hardware design process to ensure security. Furthermore,
properties are also used in formal methods for both security and
functional verification.

In summary, all existing security verification techniques need
robust security properties to ensure the trustworthiness and ro-
bustness of the RTL. Therefore, to validate the entire SoC com-
prehensively, we require an effective security property generation
technique that provides design assertions or operating constraints.
Hence, the lack of efficient security property generation methods is
the bottleneck to most hardware security verification approaches.

2.2 Large Language Models (LLM)

LLMs are cutting-edge artificial intelligence systems built on trans-
former neural networks and trained on massive datasets, allowing
them to understand and generate human-like text with remarkable
accuracy and fluency. Examples of popular LLMs include OpenAT’s
GPT series and Google’s BERT [6, 16]. LLMs excel in tasks such
as language translation, text summarization, and sentiment analy-
sis, thanks to their contextual understanding enabled by attention
mechanisms. Ongoing research aims to harness LLMs’ potential to
revolutionize natural language processing applications, including
chatbots, virtual assistants, and content generation.

LLMs have been used for various applications in the hardware
security domain, including code generation, verification, and fortifi-
cation (e.g., [9, 11, 17, 18]). However, off-the-shelf open-source LLMs
are not adopted to the domain-specific tasks like security property
generation. Therefore, these models are typically employed either
by prompt engineering or by fine-tuning them for domain-specific
tasks.

3 RELATED WORKS

Built on the Transformer architecture, Large Language Models
(LLMs) have become significant in the domain of natural language
processing [4]. These models, having undergone extensive pre-
training on expansive textual datasets, demonstrate exceptional
proficiency in generating and comprehending human language and
thus have multiple applications [7, 17]. In one study, LLMs are em-
ployed to generate SystemVerilog assertions for hardware security
verification, using natural language prompts derived from code
comments [8]. Recently, LLMs have been deployed for the purpose
of code generation, a process where executable code is automati-
cally created from specifications written in natural language [15].
One study focuses on fine-tuning and assessing LLMs for their abil-
ity to generate syntactically and functionally correct Verilog code
[19]. In another study, the authors have developed a fortification
component that employs LLMs to automatically generate and insert
additional design code that mitigates power side-channel leakage
by employing Boolean Masking [18]. One of the works leverages
LLMs to develop a specialized variant tailored for the hardware
domain [11]. This application of LLMs showcases their capability
to parse and interpret complex technical documentation, extract-
ing specific security-related properties essential for validating the
security of System-on-Chips. Another study investigates the appli-
cation of LLMS, like OpenAI’s ChatGPT and Google’s Bard, in the

@-)

Property
5 Generation Analyze Merge
e
o o)

Ml?f o

Aﬁi}[‘bu Cvss .

RTL Design Classification Calculation Classification
= = %)
2 E=ED |« & € J Optimization and
= Ranking
o
Ranked
Properties Ranking

Figure 2: Workflow of Assert-O

context of hardware design, focusing on their potential to automate
the translation of natural language specifications into HDL such
as Verilog [3]. In an alternate study, LLMs are used for zero-shot
vulnerability repair, where they are tasked with generating repaired
versions of insecure code, addressing challenges in prompt design
and assessing their performance across real-world security bug sce-
narios [14]. Another research utilizes LLMs to automatically repair
security-relevant bugs in hardware designs through a framework
that facilitates prompt engineering and parameter optimization,
demonstrating that LLMs can effectively outperform existing hard-
ware bug repair tools [1]. Authors employ LLMs to aid in reverse
engineering tasks by interpreting and explaining code through a
combination of open-ended questioning and a true/false quiz frame-
work, revealing significant potential despite current limitations in
zero-shot reverse engineering in [13].

4 ASSERT-O ARCHITECTURE

In this section, we propose Assert-O, an NLP-based property genera-
tion and optimization framework that generates security properties
from documentation and optimizes the number of properties by
merging and ranking the generated properties.

In order to generate security properties from documentation,
Assert-O follows the steps depicted in Fig. 2. First, Assert-O takes
the documentation and the RTL design as input. The RTL design is
classified into several categories based on their role in the overall
system. From the documentation and the RTL design, Assert-O
generates security properties. When extracting security properties
from the design, the properties are determined by the following two
factors: (1) they must have a condition paired with the requisite as-
signments or operations, and (2) violation of the said property must
incur a security violation (e.g., information leakage, side-channel
attack, secure-data corruption, privilege escalation, etc.). The gen-
erated properties are then analyzed and merged based on the opera-
tion and the type of registers involved. Next, the merged properties
are sorted into various categories to determine the CVSS score for
each. Using the CVSS score and the category of the RTL design, the

235

properties are ranked and categorized into five categories based on
the severity of the impact if they were to be breached.

In the subsequent sections, we will elaborate on the steps in-
volved in generating the optimized properties through Assert-O
followed by their optimization process.

4.1 Property Generation

To generate security properties from documentation, it is essential
to use a decoder-only pre-trained model that undergoes fine-tuning
to specialize in security property generation. For this purpose, we
utilize the pre-trained model, “Falcon-40B” as the base model [2].

To enhance Assert-O’s ability to recognize and generate security
properties from documentation, the initial step involves generating
security properties from a given SoC’s documentation. To fine-
tune Assert-O for this purpose, a dataset comprising approximately
70 documentation segments sourced from various hardware IPs
within the OpenTitan SoC has been compiled. The entries include
documentation segments explaining operations to prevent secu-
rity vulnerabilities of corresponding hardware IPs. The security
properties encompass the following traits that relate to security
vulnerabilities resulting from the violation of these properties: (a)
information leakage, (b) data corruption, (c) privilege escalation, (d)
bypassing security protocols, and (e) susceptibility to side-channel
and fault attacks. For example, the AES module employs a first-
order masking policy to make the AES operation resilient against
power side-channel attacks. The complete masking operation is
detailed in the documentation. This qualifies as a security property,
as a violation of the masking operation may lead to both informa-
tion leakage and the module’s susceptibility to side-channel attacks.
With the primary set of documentation segments collected, the
dataset is subsequently augmented with parts of these collected
segments and their corresponding security properties. Furthermore,
segments lacking security properties are included in the dataset to
diversify the model and prevent it from generating security prop-
erties from all inputs. The original segments are also rephrased to
introduce variety to the fine-tuning dataset.

Upon the generation of the dataset, the model is deployed to
extract properties from the documentation. These properties often
include overlapping checks on operation execution. For instance,
when verifying masking operations in AES, properties may cover
flag control, masking activation, and the operation itself. How-
ever, flag control and masking activation share similar checkpoints,
allowing for consolidation into a single comprehensive property
rather than two separate ones.

4.2 Design Classification

Security properties of IPs in an SoC can be prioritized based on
their role in the system. Therefore, it is important to identify the
role of each IP in the system, such as memory blocks, BUS, crypto
cores, processors, random number generators, etc., prior to ranking
the security properties for the design.

To determine the role of IPs within the system, Assert-O ini-
tially constructs the design hierarchy, thereby establishing the lo-
cation and interconnections of the IPs. With this hierarchy in place,
Assert-O identifies the BUS of the system. Next, Assert-O uses the

Algorithm 1: Optimization

w

«

®

10

-

1
12

14

15

16

17

Input: Generated Property list, P;;
Output: Ranked property list, Pygpnked
for P in Pj;5; do
ClaSSifyoperation Of P;
Classifyregister of P;
end
forall Operation do
‘ Pyp «— Merge(P € Pjigt);
end
forall Register Types do
‘ Ppr < Merge(P € Pyp);
end
forall P in Py; do
forall Classes in CVSS do
‘ Classifycjqss of P;
end
Calculatecyss(P);
Calculatepipq1 (P, IP,IPpo1e);
end

documentation to identify each IP’s function in the system. The sub-
sequent task involves identifying the specific modules comprising
each IP, accomplished through consideration of module names and
their parent-child relationships. Next, Assert-O groups and assigns
the modules a role such as memory block, crypto core, peripheral,
debug interface, or accelerator. This facilitates the assignment of
weights to properties based on their vulnerability associations.

4.

3 Optimization

To optimize generated properties, Assert-O follows Algorithm 1.
Assert-O takes the generated properties, Pj;,; as input. Next, Assert-

(¢}

classifies all the properties, P € Pj;s; based on their operation and

the type of registers (i.e., control, flag, data, etc.) (line 1 to line 4).
After the properties are all classified, Assert-O merges all the prop-
erties that perform a similar type of operation and constructs the
list Pys (line 5 to line 7). Subsequently, Assert-O merges all the
properties, P € Py that are using similar types of registers and
reconstructs Py (line 8 to line 10). Upon merging the properties,
Assert-O proceeds to rank the merged properties. To rank the prop-
erties, Assert-O first classifies each property, P € Py to the classes
used in calculating CVSS scores(line 12 to line 14). Upon classifi-
cation of the properties, Assert-O calculates CVSS scores of the
properties (line 15). Next, Assert-O calculates the final scores that
represent the severity of vulnerability associated with their corre-
sponding properties (line 16). Finally, Assert-O sorts the properties
based on the final scores assigned to them (line 18).

The following sections provide details on how Assert-O is trained

to optimize the generated properties.

logic err_q;

1

2 always_ff @(posedge clk_i or negedge rst_ni) begin
3 if (!rst_ni) begin

4 err_q <= '0;

5 end else if (intg_err || reg_we_err) begin

6 err_q <= 1'b1;

7 end

8 end

236

9 // integrity error output is permanent and should
be used for alert generation
10 // register errors are transactional

11 assign intg_err_o = err_q | intg_err | reg_we_err;

Listing 1: Integrity error function for PWM.

4.3.1 Merging. Upon generating security properties from docu-
mentation, Assert-O merges the properties to reduce the number of
properties. To train Assert-O to merge properties, another dataset
is created to fine-tune the base model and make another fine-tuned
model. This model merges the security properties by using two
metrics: (a) the type of operation the properties are describing and
(b) the type of registers involved in the operations.

Security properties detail operations run by a module to bolster
the security of that module. Moreover, each module in the design of
an SoC has a number of registers that can be classified into several
types, e.g., data registers, control registers, flag registers, status
registers, etc. To merge properties based on the operation and the
type of registers involved, we take the properties used for training
the properties generator, merge them, and create another dataset.
For example, in the AES design, a finite state machine (FSM) is
implemented using sparse encoding. The muxes, handshakes, etc.,
are also controlled by sparse encodings. These properties elaborate
on the use of the encoding method on control signals. Therefore,
these properties can be merged to make one single property for the
AES module regarding the encoding procedure.

To illustrate the merging process, we use the toy example il-
lustrated in Listing 1. Here, a code snippet for an asynchronous
reset operation is implemented. For this code-snippet, the following
properties displayed in Listing 2 are generated:

1 property assert_rst_0;

2 Irst_ni |-> err_q == 0; // the value of \
textit{err_q} should be set to 0.

3 endproperty

5 property assert_rst_0;

6 I'rst_ni |-> $stable(intg_err); // the value
of intg_err should remain the same.

endproperty

9 property assert_rst_0;

10 Irst_ni |-> $stable(reg_we_err);
reg_we_err should not change.

11 endproperty

// value of

Listing 2: Generated Properties.

These three properties, each operating on distinct registers, can
be combined into a single comprehensive property, as depicted in
Listing 3. This merging is achieved by matching their operations,
i.e, by aligning the condition and assignment checks. Since all three
properties share the same condition, they can be consolidated by
ANDing their checks into one complete property.

1 property assert_rst_0;
2 Irst_ni |-> err_q

$stable(reg_we_err);
3 endproperty

&& $stable(intg_err) &&

Listing 3: Merged Property.

Merging reduces the number of properties that can subsequently
be ranked based on their importance and the severity of the security
risk they pose to the overall system.

4.3.2 Ranking. In order to optimize the assertion implementation
overhead in the code, a method for ranking the properties based
on their importance to the system is necessary. Therefore, a com-
prehensive ranking system was conceptualized to evaluate and
prioritize the merged properties based on their respective Common
Vulnerability Scoring System (CVSS) scores and the type of security
vulnerability associated with that property. The CVSS score is a
numerical representation of a vulnerability’s severity that can be
used to rank the security properties [10]. However, the same type
of vulnerability can carry different weights to different modules
of a design. For example, information leakage is more severe for
cryptographic cores than for the peripherals of the system. On the
other hand, privilege control is a severe threat to the peripheral IPs.
Therefore, it is important to To rank the properties, the process is
divided into three different subprocesses: (a) CVSS score calculation,
(b) assigning weight to the properties based on the module they
belong to, and (c) finally assigning the overall score representing
the severity for ranking the properties.

CVSS Score Calculation. The Common Vulnerability Scoring Sys-
tem (CVSS) score is a structured assessment framework that mea-
sures the severity of security vulnerabilities present within software
or systems [10]. It achieves this through the classification of vul-
nerabilities based on their characteristics. The CVSS score consists
of three primary groups, namely the Base, Temporal, and Environ-
mental metrics, each encompassing a set of attributes. The Base
group defines intrinsic vulnerability characteristics, the Temporal
group considers time-related factors, and the Environmental group
contextualizes vulnerabilities to specific user environments. These
groups are further divided into: Attack Vector, Complexity, Require-
ments, Privileges, User Interaction, Scope, Confidentiality, Integrity,
and Availability.

To determine the CVSS score of a property, Assert-O has been
trained to categorize each property into specific classes. For in-
stance, a property can be linked to an attack vector type, such as
‘Network, ‘Adjacent; ‘Local, or ‘Physical. Specifically, properties
that describe the concealment of first-order differential power side-
channel attacks are classified as being associated with a ‘Physical’
attack vector.

In order to enhance the classifier’s ability to accurately cate-
gorize properties into their corresponding attack vectors, attack
complexity levels, attack requirements, privilege requirements, user
interactions, and security class levels for confidentiality, integrity,
and availability, we assign a CVSS vector to the combined properties
within the dataset. This CVSS vector encapsulates the mentioned
property classes. Subsequently, by utilizing the refined classifier, we
can determine the classes for each property and generate a CVSS
vector, which enables us to compute the associated CVSS score for
that specific property.

Table 1 illustrates a sample row from the training dataset, show-
casing a property of the OpenTitan Big Number (OTBN) accelerator.
In this instance, the ‘Attack Vector (AV)’ is denoted as 1, indicating
that exploiting this property necessitates local execution of the
attack. Likewise, the ‘Privileges Required’ is assigned a value of
2, signifying a high level of user privilege needed for a successful
attack. In summary, the CVSS vector for exploiting this property is
as follows:

CVSS:4.0/AV:L/AC:H/AT:P/PR:H/UI:A/VC:H/VI:L/VA:L/SC:H/SL:L/SA:L

Using this vector, the overall score for the given property is 5.9
using the CVSS v4.0 standard.

Assigning Weight to Property for a Module. In order to rank prop-
erties based on the module’s role in the overarching system, the
ranking system of Assert-O needs to be trained to assign weights to
the properties. In this step, Assert-O is trained with a dataset that
classifies each property with the types of security vulnerability it
is associated with.

Assert-O is trained with a dataset that lists the module’s role in
the overall system, the CVSS score of the property, and the type of
vulnerability. The type of vulnerability can fall into the following
categories: (1) information leakage, (2) information corruption, (3)
privilege control, (4) metastability of states, (5) protocol control,
and (6) error handling. Assert-O is trained with this information to
assign the properties a category (i.e., critical, high, medium, low) to
rank the properties.

In Table 1, the IP OTBN serves as an accelerator for crypto-
graphic cores handling operations such as RSA or Elliptic Curve
Cryptography (ECC). This specific property concerns the clearance
of data residue post-operation, falling under the category of infor-
mation leakage violations. Given the critical nature of information
leakage from cryptographic cores, this property is assigned the
highest weight value of 1.

5 EVALUATION AND RESULTS
5.1 Experimental Setup

In order to evaluate the efficacy and versatility of Assert-O in gen-
erating security properties, the benchmarks are required to have
comprehensive documentation, as Assert-O necessitates documen-
tation for security vulnerabilities for the given design. Furthermore,
the code base must offer functionalities such as Finite State Ma-
chines (FSM) and resets in synchronous and asynchronous oper-
ation modes to enhance the model’s applicability across various
designs. diverse implementation of these functionalities in the code
base ensures Assert-O’s applicability on different designs. To this
end, we evaluate Assert-O using the OpenTitan SoC [12] since it:
(1) is an open-source industry-grade design, (2) has well-detailed

Table 1: Example Dataset Row for Property and IP role Classification.

Attack Attack Attack Re- Privil U
IP Name Property ac ac . . ack Re e fges ser, Scope Confidentiality Integrity Availability IP role
Vector Complexity quirements Required Interaction
Secure wiping, issued by ‘SEC_WIPE_DMEM’, is per-
OTBN formed by securely replacing the memory scrambling 1 1 1 2 2 2 2 1 1 Crypto

key, making all data stored in the memory unusable.

237

Table 2: Property Generation and Merging Summary

IP Name Sentences in Properties Properties after Severity of Vulnerabilities
Document Generated Merging Critical High Medium Low
PWM 129 36 26 - 4 14 8
ROM Control 69 22 17 5 3 6 3
UART 83 27 19 7 4 5 3
AES 85 41 32 7 8 12 5
Reset Manager 73 45 37 9 11 17 -
Pattern Generator 22 12 7 - 2 3 2
Total 461 183 138 28 32 57 21

documentation, and (3) includes a wide array of implementation
of FSMs and resets with both synchronous and asynchronous op-
eration mode. The following IPs were utilized from OpenTitan as
benchmarks in our experiments: PWM, ROM Control, UART, AES,
Reset Manager, and Pattern generator. Our experimental platform
is composed of an Nvidia DGX server equipped with four Nvidia
A-100 GPU cores and 1TB memory.

5.2 Assert-O Evaluation

Assert-O was evaluated by analyzing the documentation of six dis-
tinct OpenTitan IPs that had not been employed in the fine-tuning
of Assert-O. The IPs utilized for this evaluation encompassed a
Pulse Width Modulator, ROM control, UART, AES, Reset Manager,
and Pattern Generator. As illustrated in Table 2, the combined doc-
umentation for these IPs comprises a total of 461 sentences, with
individual documents ranging in length from 22 to 129 sentences.
From the documentation, Assert-O initially extracted 183 proper-
ties, but following a merging operation, the total properties were
reduced to 138. Among these 138 properties, 28 are classified as
having a critical vulnerability potential, while 32 are categorized as
having a highly severe vulnerability potential.

From Table 2, it can be observed that the IP, PWM has the most
significant merging operation reducing 36 generated properties
to 26 properties. This is due to the functions of the PWM. As the
protocols of the PWM are mostly similar and have overlapping
functionalities, the generated properties for each security opera-
tion assert similar operation checks and use the same registers to
verify the properties. Merging seems to reduce the security prop-
erties of UART and AES despite their different security protocols.
This integration arises from how these properties are coded. In the
OpenTitan codebase, common flags for security checks are utilized,
enabling the assertion of these properties based on flag values. This
allows merging operations to be more effective for these IPs. When
the categories based on the severity of these IPs are observed, it can
be seen that the pattern generator and PWM modules do not have
any critical-level security vulnerability. This is due to the IPs being
peripheral controllers. These IPs do not have any functionality that
the adversary can exploit to execute any critical error.

On the other hand, none of the security properties pertaining to
the reset manager fall into low-severity vulnerability. The primary
reason behind this is that the reset manager controls the reset
activities of the SoC. Therefore, all the security properties have a
high impact on the overall system.

238

Overall, Assert-O successfully extracted a comprehensive set
of 183 properties from an initial dataset comprising 461 lines of text.
Employing a merging operation, Assert-O efficiently condensed
these properties into a subset of 138, representing a notable reduc-
tion of 24.6%. Subsequently, these merged properties are categorized
into four distinct groups. The distribution of the severity impact
of these properties illustrates security implications associated with
the corresponding IPs under scrutiny. Notably, among these cate-
gories, the ‘Reset Manager’ emerged as the element with the most
significant security impact on the system, closely followed by the
UART and AES components. These categories optimize verifica-
tion, allowing for the exclusion of low-severity vulnerabilities to
minimize penalties.

6 CONCLUSION

In summary, our study highlights the importance of hardware se-
curity validation within modern SoC designs, which face vulnera-
bilities stemming from integrated IP cores. Traditional validation
methods, relying solely on manual expertise, are not scalable and
time-intensive as they are prone to human errors. To this end, in this
paper we propose, Assert-O, a specialized automated framework
utilizing LLM, we aim to extract and enhance security properties
from SoC documentation, reducing the need for manual interven-
tion by prioritizing critical security properties. Through evaluation
on OpenTitan IPs, Assert-O effectively reduced a comprehensive
set of 183 properties to 138, marking a 24.6% decrease. Further cat-
egorization revealed the Reset Manager IP as the most impactful,
followed closely by UART and AES components. Overall, Assert-O
offers a promising approach to bolster hardware security valida-
tion in SoC designs, paving the way for more robust and secure
computing systems.

ACKNOWLEDGMENTS

This research is supported by the Technology Innovation Institute
(TTI), Abu Dhabi, UAE.

REFERENCES

[1] Baleegh Ahmad et al. 2023. Fixing Hardware Security Bugs with Large Language
Models. arXiv:2302.01215 [cs.CR]

[2] Ebtesam Almazrouei et al. 2023. The Falcon Series of Language Models: Towards
Open Frontier Models. (2023).

[3] Jason Blocklove et al. 2023. Chip-Chat: Challenges and Opportunities in Conver-
sational Hardware Design. arXiv preprint arXiv:2305.13243 (2023).

[4] Yupeng Chang et al. 2023. A survey on evaluation of large language models.
arXiv preprint arXiv:2307.03109 (2023).

https://arxiv.org/abs/2302.01215

(5]

(6]

(71

Ghada Dessouky et al. 2019. {HardFails}: Insights into {Software-Exploitable }
Hardware Bugs. In 28th USENIX Security Symposium (USENIX Security 19). 213—
230.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Jean Kaddour et al. 2023. Challenges and applications of large language models.
arXiv preprint arXiv:2307.10169 (2023).

Rahul Kande et al. 2023. LLM-assisted Generation of Hardware Assertions.
arXiv:2306.14027 [cs.CR]

Mingjie Liu et al. 2023. Chipnemo: Domain-adapted llms for chip design. arXiv
preprint arXiv:2311.00176 (2023).

Peter Mell et al. 2007. A complete guide to the common vulnerability scoring
system version 2.0. In Published by FIRST-forum of incident response and security
teams, Vol. 1. 23.

Xingyu Meng et al. 2023. Unlocking Hardware Security Assurance: The Potential
of LLMs. arXiv:2308.11042 [cs.CR]

OpenTitan [n.d.]. Documentation | OpenTitan.
documentation/index.html

https://opentitan.org/

239

(13

[14]

[15

[16

(17

[19

[20

Hammond Pearce et al. 2022. Pop Quiz! Can a Large Language Model Help With
Reverse Engineering? arXiv:2202.01142 [cs.SE]

Hammond Pearce et al. 2023. Examining Zero-Shot Vulnerability Repair with
Large Language Models. In 2023 IEEE Symposium on Security and Privacy (SP).
2339-2356. https://doi.org/10.1109/SP46215.2023.10179324

Gabriel Poesia et al. 2022. Synchromesh: Reliable code generation from pre-
trained language models. arXiv preprint arXiv:2201.11227 (2022).

Konstantinos I Roumeliotis and Nikolaos D Tselikas. 2023. Chatgpt and open-ai
models: A preliminary review. Future Internet 15, 6 (2023), 192.

Dipayan Saha et al. 2023. LIm for soc security: A paradigm shift. arXiv preprint
arXiv:2310.06046 (2023).

Amisha Srivastava et al. 2023. SCAR: Power Side-Channel Analysis at RTL-Level.
arXiv:2310.06257 [cs.CR]

Shailja Thakur et al. 2023. Benchmarking Large Language Models for Auto-
mated Verilog RTL Code Generation. In 2023 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1-6. https://doi.org/10.23919/DATE56975.2023.
10137086

Hasini Witharana et al. 2022. A survey on assertion-based hardware verification.
ACM Computing Surveys (CSUR) 54, 11s (2022), 1-33.

https://arxiv.org/abs/2306.14027
https://arxiv.org/abs/2308.11042
https://opentitan.org/documentation/index.html
https://opentitan.org/documentation/index.html
https://arxiv.org/abs/2202.01142
https://doi.org/10.1109/SP46215.2023.10179324
https://arxiv.org/abs/2310.06257
https://doi.org/10.23919/DATE56975.2023.10137086
https://doi.org/10.23919/DATE56975.2023.10137086

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware Security and Verification
	2.2 Large Language Models (LLM)

	3 Related Works
	4 Assert-O Architecture
	4.1 Property Generation
	4.2 Design Classification
	4.3 Optimization

	5 Evaluation and Results
	5.1 Experimental Setup
	5.2 Assert-O Evaluation

	6 Conclusion
	Acknowledgments
	References

