
SymbFuzz: Symbolic Execution Guided Hardware Fuzzing
Samit Shahnawaz Miftah

Department of Electrical, Computer,
and Systems Engineering

Rensselaer Polytechnic Institute
Troy, New York, USA

miftas@rpi.edu

Amisha Srivastava
Department of Electrical and

Computer Engineering
University of Texas at Dallas

Dallas, Texas, USA
amisha.srivastava@utdallas.edu

Hyunmin Kim
Technology Innovation Institute
Abu Dhabi, United Arab Emirates

Hyunmin.Kim@tii.ae

Shiyi Wei
Department of Computer Science
University of Texas at Dallas

Dallas, Texas, USA
swei@utdallas.edu

Kanad Basu
Department of Electrical, Computer,

and Systems Engineering
Rensselaer Polytechnic Institute

Troy, New York, USA
basuk@rpi.edu

Abstract
Modern hardware incorporates reusable designs to reduce cost
and time to market, inadvertently increasing exposure to secu-
rity vulnerabilities. While formal verification and simulation-based
approaches have been traditionally utilized to mitigate these vulner-
abilities, formal techniques are hindered by scalability issues, while
conventional simulation methods frequently overlook critical edge
cases. Fuzzing, as a simulation-based strategy, has demonstrated
considerable promise in enhancing the security of both software and
hardware; however, it is impeded by challenges such as limited input
coverage, difficulties in traversing branching paths, and the com-
plexity of managing circuit parameters, in addition to the limited
adaptability of existing hardware fuzzing techniques within indus-
trial workflows. To address these limitations, we propose SymbFuzz,
an innovative hybrid hardware fuzzing methodology that leverages
symbolic execution to achieve superior coverage. SymbFuzz is the
first hardware fuzzing technique to be implemented on the industry-
standard Universal Verification Methodology (UVM), facilitating
seamless integration into commercial hardware verification flows.
SymbFuzz was evaluated on a diverse set of processor RTLs, in-
cluding OpenTitan (Ibex), CVA6, Rocket-Core, and Mor1kx. These
designs span a range of processor architectures and complexities.
SymbFuzz detected all bugs previously found by existing fuzzers
and additionally uncovered 14 new bugs, including a vulnerability
in OpenTitan, reported in the CWE 2025 database. It also achieved
up to 6.8× faster convergence compared to traditional UVM random
testing and over 2 × 104 additional functional coverage points com-
pared to state-of-the-art fuzzers, demonstrating its effectiveness in
improving RTL validation across varied processor architectures.
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1 Introduction
Increasing design complexity, shrinking feature sizes, and mar-
ket pressures have intensified hardware vulnerabilities [8, 44, 62].
These vulnerabilities span from functional bugs [34] to critical se-
curity flaws [33, 39], posing growing risks to system integrity. The
Common Vulnerabilities and Exposures (CVE) and Common Weak-
ness Enumeration (CWE) maintained by MITRE document issues
across hardware and software, highlighting the need for rigorous
verification [1, 2, 17]. In modern SoCs for critical applications, over
70% of resources are allocated to verification [24]. Security verifi-
cation, a central element of SoC design, focuses on vulnerabilities
that adversaries could exploit to compromise systems. To mitigate
such risks, semiconductor firms incorporate a structured security
development lifecycle (SDL) into traditional hardware design flows,
reinforcing security before chip release [18, 27].

Various techniques and tools in academia and industry have been
developed to detect hardware vulnerabilities, including industry-
standard tools for formal and simulation-based verification [7, 13,
52, 56, 66], and advanced SoC verification methods such as infor-
mation flow tracking (IFT) [6, 36, 37, 48, 49, 60, 68], run-time detec-
tion [28, 50, 63], concolic testing [42, 69], and hardware fuzzing [14,
15, 29, 31, 35, 38, 45, 61]. Formal verification excels with smaller
designs but struggles with larger SoCs due to state space explo-
sion [17, 19]. IFT enhances data tampering and leakage detection yet
requires extensive setup [31, 60]. Run-time detection introduces se-
curity checks at high re-spin costs [50, 63], while simulation-based
methods may overlook security-critical scenarios [42]. Hardware
fuzzing has become popular for SoC verification but still faces
coverage challenges despite utilizing state-of-the-art optimization
methods [14]. Hybrid fuzzing, which merges concolic execution
with fuzzing, shows potential in software [16, 40, 47, 54, 67, 69] and
may enhance hardware security coverage.
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Developing an efficient hardware fuzzer requires addressing
key challenges. Accurate coverage monitoring is essential for
guiding exploration and generating precise constraints. Improving
guidance efficiency reduces computational overhead, enhancing
performance. Furthermore, a robust reset mechanism ensures de-
terministic testing by reliably mapping reset states in complex SoC
designs. These challenges underscore the need to balance accuracy,
efficiency, and reliability in hardware fuzzing.

To address these challenges, we propose SymbFuzz, a hybrid
fuzzing technique that improves state coverage with minimal com-
putational overhead by combining Universal Verification Methodol-
ogy (UVM) [5], widely used in hardware verification, with symbolic
execution. SymbFuzz employs a white-box approach, offering full
visibility into the design under verification (DUV) and using a cov-
erage monitor to track reachable states. The framework identifies
the DUV’s I/O interface, extracts the reset tree for deterministic
testing, and constructs a control flow graph (CFG) to capture branch
and register data. The CFG serves as a core component, guiding
state exploration by reducing dependence on hard resets, while
checkpoints within the CFG enable efficient path alternation and
broader node coverage. Seed generation based on the CFG steers
exploration toward unvisited states, ensuring thorough and robust
testing. Novelty: SymbFuzz makes the following three key con-
tributions utilizing industry-standard UVM-based verification: (1)
Generating checkpoint setups, (2) Enabling the traversal of specific
checkpoints after a reset through a saved input pattern sequence,
and (3) Developing a symbolic execution-based guidance mecha-
nism to optimize the fuzzing process, as detailed in Section 4.

In this paper, our main contributions are:

• We introduce SymbFuzz, a novel hardware verificationmethod-
ology based on hybrid fuzzing, designed to systematically
explore and verify all relevant states associated with speci-
fied security properties, ensuring comprehensive coverage.
• SymbFuzz is developed using UVM, enabling efficient inte-
gration into the hardware security development lifecycle
(SDL) and enhancing the robustness of security verification
in hardware design.
• We develop a checkpoint mechanism using reset operation,
reducing computational cost and enabling partial reset to
accelerate path exploration.
• SymbFuzz is evaluated on a buggy version of the OpenTitan
SoC [46] from HACK@DAC’24, where it was able to detect
17 bugs, including one new bug in the original OpenTitan
SoC, which was recognized as a novel entry in the CWE’s
2025 database. Moreover, SymbFuzz outperforms current
hardware fuzzing approaches by achieving 2×104 additional
coverage points.

2 Background
Coverage-guided Fuzzing:

Fuzzing builds upon boundary value analysis (BVA) [21] by sys-
tematically testing valid and invalid input ranges to identify vulner-
abilities and undefined behaviors [55]. It employs two main tech-
niques: mutation-based (altering existing inputs) and generation-
based (creating inputs using protocol specifications). Tools like
Google’s OSS Fuzz and ClusterFuzz have effectively applied fuzzing

across various software systems, uncovering numerous security
flaws [20, 23, 26, 31, 41, 51, 57, 59, 65, 70].

Coverage-guided fuzzing enhances test generation by maximiz-
ing code path exploration [10, 11, 25, 43]. This approach uses run-
time instrumentation to track execution coverage, iteratively opti-
mizing inputs to reach unexplored code regions.
Symbolic Execution: Symbolic execution is a widely used pro-
gram analysis technique designed to understand the relationship
between inputs and program behavior [9, 12, 32]. Rather than using
specific, concrete values, symbolic execution employs symbolic
values to represent inputs. This allows the interpreter to gener-
ate expressions incorporating these symbolic values for program
variables. During symbolic execution, the interpreter assigns con-
straints to conditional branches based on symbolic values, rep-
resenting the conditions under which different branches will be
executed. By solving these constraints, it is possible to determine
the branching behavior of the program for various input patterns.
In other words, symbolic execution can identify which inputs will
cause the program to follow specific execution paths.
Universal Verification Methodology (UVM):

The Universal Verification Methodology (UVM) is a standardized
framework widely used in the semiconductor industry to verify
hardware designs. Developed by Accellera and based on SystemVer-
ilog [5], UVM offers a reusable and structured verification environ-
ment essential for managing the complexity of modern hardware
systems. As a widely adopted standard, UVM allows engineers to
verify diverse designs, including processors and SoCs, with high
accuracy and efficiency. By automating and standardizing test pro-
cedures, UVM establishes a robust methodology that simplifies
verification and minimizes the risk of undetected bugs.

The UVM framework consists of key components, each crucial
to the verification process. These components collaborate to create
a robust verification environment supporting test generation, exe-
cution, and analysis. Their primary functions are outlined below:
UVMTestbenchEnvironment:The testbench environment forms
the essential framework that configures and connects all UVM com-
ponents. It integrates modules, interfaces, and classes, defines the
design under verification (DUV), and initializes tests. Acting as the
UVM framework’s core, the testbench unifies verification compo-
nents into a cohesive system.

UVM Agents: Agents represent the primary entities that interact
with the DUV. They are responsible for driving and monitoring
signals at the DUV’s interfaces. Each agent typically consists of a
driver, a monitor, and a sequencer: (1) The Driver sends specific
stimuli to the DUV by translating high-level commands into low-
level transactions. (2) The Monitor observes the DUV’s outputs,
captures results, and forwards them to the scoreboard for analysis.
(3) The Sequencer provides stimulus to the driver, controlling the
flow of transactions sent to the DUV.

3 Related Works and Existing Challenges
Recent advances in hardware security verification have introduced
diverse techniques with two shared goals: improving scalability
and enhancing coverage. This section focuses on hardware fuzzing,
which shows promise in achieving both, as noted in Section 1. Early
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Figure 1: Overview of SymbFuzz.

work like RFuzz introduced mux-coverage-guided fuzzing for FP-
GAs [35], but faced scalability issues due to high computational
overhead [29]. HyperFuzzing used grammar-based software mod-
eling [45], yet struggled with FSMs and required manual interven-
tion. DifuzzRTL enhanced register-level coverage [29] but lacked
insight into FSM transitions and signal toggles [3, 31].HWFP used
Verilator for translation, limiting support for complex HDL con-
structs [61].TheHuzz andPSOFuzz optimized input generation via
instruction tuning and swarm-based path selection [14, 31], though
both incurred feedback and performance limitations. HypFuzz
integrated formal methods to deepen exploration [15] but risked
stagnation. Finally, GenFuzz leveraged GPUs for faster execution,
though with limited gains in bug detection [38].

State-of-the-art (SOTA) hardware fuzzing techniques face key
limitations. Software fuzzers like AFL++ [4], when combined with
Verilator [53], fail to model critical hardware behaviors such as
clock signals, delays, and four-state logic. As a result, they are inad-
equate for thorough hardware security verification. These fuzzers
also lack bit-level precision and proper handling of register se-
mantics. In contrast, hardware-specific fuzzers often use simplistic
coverage metrics (e.g., mux coverage), missing crucial corner cases.
Additionally, static feedback mechanisms slow convergence and
hinder deep, state-dependent exploration.

Several recent works have used symbolic reasoning to enhance
hardware fuzzing. Compared to these, SymbFuzz introduces three
key advantages: (1) Detection model: SymbFuzz inserts confidential-
ity and privilege assertions directly in RTL. This allows detection
of violations that do not affect the visible architectural state. Dif-
ferential techniques, like HyPFuzz [15], may miss such faults. (2)
Design scope: SymbFuzz drives RTL inputs directly and works across
processor types and peripheral IPs without changes. In contrast,
fuzzing approaches that generate ISA binaries are limited to proces-
sor pipelines and require extra translation. (3) Guidance efficiency:
SymbFuzz combines symbolic search with a checkpoint-rollback
loop. It substitutes concrete register values and constrains solving
undefined pin values. This speeds up control state exploration. In
our tests, SymbFuzz found over 2 × 104 new coverage points and
17 new bugs, including a CWE-classified leak. Prior work showed
smaller gains (e.g., only 1.7% branch coverage on the same cores).

Novelty: The novelty of our proposed technique, SymbFuzz, can
be summarized as follows: (1) We integrate an SMT-based symbolic
execution engine with the sequencer–driver structure of UVM. This
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Figure 2: UVM integration into SymbFuzz.

integration enables us to generate input stimuli based on constraint-
solved execution paths that consider the complete RTL state. As
a result, we remove the need for software-based approximations
or surrogates. (2) We introduce a checkpoint and partial-reset ac-
celeration technique. This approach uses a lightweight snapshot
mechanism that saves only the essential transaction history and
architectural state. It enables precise re-entry into complex microar-
chitectural states without requiring a full system reboot, thereby
eliminating unnecessary simulation time. (3) We redefine cover-
age in terms of control-register interaction tuples and formulate
their data dependency equations. Solving these equations with an
SMT solver analytically guides mutations to RTL regions that are
unreachable by random fuzzers. (4) We show that the same test
harness can detect bugs in a variety of hardware designs—including
the 32-bit in-order Ibex core, the 64-bit out-of-order CVA6 core, and
several peripheral IPs—without requiring any ISA-specific modifica-
tions. This demonstrates that our approach is portable and effective
across different types of architectures.

4 SymbFuzz Architecture
The SymbFuzz framework, shown in Figure 1, includes three com-
ponents: (1) simulation setup (a - c), (2) coverage measurement (d),
and (3) seed mutation (e - f). Inputs are the RTL design of the DUV,
its security properties, and user-defined fuzzing parameters. The
simulation setup features the UVM environment [5], a seed generator,
and a simulation platform. In the UVM environment, the sequence
generator creates randomized input vectors and constraints, which
the driver sends to the DUV. The monitor checks security proper-
ties and generates a report. The coverage monitor tracks coverage,
directing the SymbFuzz constraints solver to optimize input vector
generation through.

Algorithm 1 outlines the fuzzing workflow of SymbFuzz. It tests
the RTL design of the DUV, D, against a property set P𝑙𝑠𝑡 . The
parameters include an interval I (clock cycles before logging) and a
threshold 𝑇ℎ (stagnation limit for invoking symbolic execution). A
bug report is produced at the end. The process starts by extracting
the I/O interface (IF) and building the control flow graph (CFG)
of D using Pyverilog [58]. Registers are classified, and key states
(checkpoints) are marked (lines 2–4).

The CFG begins at reset and covers all execution paths. Each
node is a unique hardware state, defined by its register vector. Tran-
sitions are edges with unique IDs, based on input conditions and
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Algorithm 1: SymbFuzz algorithm.
Input: RTL Design, D; Property List, P𝑙𝑠𝑡
Parameter: Interval, I; Exit Threshold, 𝑇ℎ
Output: Report, R

1 IF← Extract(D) /* IF = Interface */
2 CFG← Generate(D);
3 Categorize registers in D;

4 ChckPoints
𝑚𝑎𝑟𝑘←−−−−− CFG;

5 TB
𝑆𝑒𝑡𝑢𝑝
←−−−−− UVM environment using IF, I;

6 D 𝐵𝑖𝑛𝑑←−−−− P𝑙𝑠𝑡 ;
7 while All ChkPoints not Covered do

8 𝑆𝑖𝑚𝐹𝑖𝑙𝑒
𝐷𝑢𝑚𝑝 𝑉𝐶𝐷
←−−−−−−−−−− 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 (D) ;

9 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒
𝑅𝑒𝑐𝑜𝑟𝑑←−−−−−− 𝑅𝑒𝑎𝑑 (𝑆𝑖𝑚𝐹𝑖𝑙𝑒) ;

10 if All states covered then
11 mark current ChckPoint as covered
12 end
13 if 𝑁𝑜𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 (𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒) > 𝑇ℎ then
14 identify(last covered state);
15 find (nearest ChckPoint);
16 while No New State can be reached do
17 find (previous ChckPoint in the CFG);
18 end
19 reset back to the ChckPoint;
20 Constraints← SolveFor(newStateCondition);

21 TB
𝐴𝑝𝑝𝑙𝑦
←−−−−− Constraints;

22 end
23 if Bug found then
24 R ← 𝐵𝑑𝑒𝑡 /* Bug Details, 𝐵𝑑𝑒𝑡 , contain

clock cycle time and violated property */
25 end
26 end

context. SymbFuzz logs each transition as a tuple – ⟨edge ID, reg-
ister value⟩. Checkpoints are nodes with three or more outgoing
edges. In our analysis, full coverage signifies each edge is exer-
cised at least once. This ensures exploration of all key behaviors.
Coverage is deterministic since node and edge IDs are unique (see
Section 4.6). After each simulation, SymbFuzz resumes from the
last checkpoint. A UVM environment is created using IF, interval
I, and property set P𝑙𝑠𝑡 (lines 5–6). Fuzzing continues until all
checkpoints are covered (line 7). Each round simulates I cycles,
logs the trace (line 8), and updates coverage using control register
values (line 9). A checkpoint is marked covered when all descendant
paths are exercised (lines 10–12).

If coverage does not improve for several intervals, a stagnation
counter increases. Once it passes 𝑇ℎ, symbolic execution begins.
It finds the latest covered state (line 14), locates the closest check-
point (line 15), and backtracks the CFG to find unexplored paths
(lines 16–18). The system resets and uses a constraint solver to reach
those paths (lines 19–21). If no stagnation is seen, unguided fuzzing

continues. Detected bugs and property violations are logged with
their timestamps and added to the final bug report R (lines 23–25).

4.1 UVM Integration into SymbFuzz
We illustrate the architecture of SymbFuzz and its integration of
UVM using Figure 2. Blocks (1) to (7) depict a standard UVM setup,
while SymbFuzz extends this framework through blocks (8) to (11).

SymbFuzz automates the verification framework by first con-
figuring the simulation platform with a UVM template. Next, it
extracts the input-output (I/O) interface of the DUV using PyVer-
ilog [58], allowing it to connect with the UVM Driver and UVM
Monitor. This establishes the UVM-based verification environment.
In order to proceed with the fuzzing mechanism, SymbFuzz gen-
erates the CFG of the DUV using PyVerilog (8). From this CFG, it
derives dependency equations that express the control registers
as functions of the input interface (9). These equations are then
solved by an SMT solver (z3-solver), producing constraints that
enable UVM sequencers to generate input sequences tailored to
alter control register values [22]. This adjustment directs the DUV
through unexplored paths in the CFG, especially when coverage
improvement reaches a plateau (10). The generated constraints are
subsequently integrated into the UVM sequencer, initiating the
next batch of simulations.

SymbFuzz is designed to handle specific tasks using a combina-
tion of assumptions and modular components, each responsible
for particular subtasks, as detailed in the following sections. In
Listing 1, we present an RTL design for an Arithmetic Logic Unit
(ALU) that accepts two data inputs, A and B, along with an opera-
tion code, op. The most significant bit of op specifies whether the
ALU operates in 8-bit or 16-bit mode. This example will be used to
elaborate on each task and component in the subsequent sections.� �

1 module ALU (input nrst ,input [15:0] A,
2 input [15:0] B,input [3:0] op,output [15:0] Out);
3 typedef enum logic [2:0] {INIT = 0,ADD = 1,
4 SUB = 2,AND = 3,OR = 4,XOR =5} state;
5 logic OPmode;
6 always_comb begin : resetLogic
7 if (!nrst)state =0;
8 else begin
9 state=op [2:0];
10 OPmode=op[3];
11 end
12 always_comb begin : FSM
13 if (OPmode) begin
14 Out [15:8]= 0;
15 case (state)
16 INIT: Out [7:0]=0;
17 ...
18 default: Out = 0;
19 endcase
20 else
21 case (state)
22 INIT: Out=0;
23 ...
24 default: Out = 0;
25 endcase
26 end
27 endmodule� �
Listing 1: A toy example for a DUV (in SystemVerilog).

Figure 3 illustrates the corresponding CFG for Listing 1. In this
diagram, every state of the design is represented as a node, while
each transition between states is denoted by a uniquely numbered
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Figure 3: Diagram of CFG from Listing 1.

edge. The numbers represent the parent nodes from which the edge
originates. The hatched nodes in the bottom row are leaf nodes:
they terminate the execution path and lead only to the reset state,
with no further successors.

4.2 Input Definition
During simulation, the RTL top module connects to a testbench or
input pins. Test inputs are packed into bit vectors, split into bytes
each cycle, and reapplied after resetting the DUV to a known state.
SymbFuzz uses PyVerilog to extract the DUV’s I/O ports and link
them to the UVM Driver [58]. It detects fields such as address, data,
and control, and randomizes them to produce valid test sequences.
These inputs pass through the UVM sequencer, which drives the
DUV with functional and fuzzed stimuli (see a in Figure 1). Listing 1
shows SymbFuzz extracting ports (nrst, A, B, op, Out), generating
random bitstrings, feeding them into the DUV.

4.3 Deterministic Test Execution
In order to make sure that the DUV is reset at each test case, it is
necessary to declare the clock and reset signal for each IP in the
DUV. For example, in Listing 1, the reset signal is ‘nrst’. Using this,
SymbFuzz creates a reset distribution tree. This enables SymbFuzz
to reset part of the overall design and reduce runtime for fuzzing.
Furthermore, while executing fuzz testing, we assume a white-box
model. All internal variables/registers are assumed to be observable,
and interaction is only possible through the input ports.

4.4 Register Initialization
To optimize wafer space, circuit designs often omit register reset
circuitry, leaving DUV registers undefined at reset. Two-state simu-
lators randomly initialize these registers to ‘0’ or ‘1’, while four-state
simulators add an ‘X’ state for uncertainty. Our UVM-based ap-
proach uses four-state simulation with predefined clock and reset
signals to generate reset trees and identify control registers.

4.4.1 Identification of Control Registers. To assess coverage,
we first identify control registers that influence the DUV’s path in
the CFG. In this structure, all non-leaf nodes are governed by control
registers, while leaf nodes represent DUV states. Coverage related
to a specific state or checkpoint thus maps to the corresponding
leaf nodes under that control register. Using this hierarchy, Symb-
Fuzz locates CFG branching points and lists the associated control
registers. These registers are key to coverage analysis. In the RTL
design shown in Listing 1, the registers OPmode and state serve this
role by determining control flow based on their values.

4.4.2 Calculation ofDependency. To enable the fuzzer to transi-
tion the DUV to the next state effectively, two key steps are required:
(1) identifying the target state and (2) generating input patterns that

guide the DUV into the desired state. In hardware design, state tran-
sitions depend on state registers, which are influenced by sequences
of input patterns, combinations of inputs, or both. Achieving this
requires an understanding of how state registers depend on input
ports, which is analyzed using dependency graphs and equations
derived through the CFG.

After identifying the control registers (Section 4.4.1), SymbFuzz
constructs a dependency graph that expresses each register as a
function of input ports. This helps generate input sequences to
change the register values. To build dependency equations, Symb-
Fuzz classifies assignments into two types: (i) static assignments,
which update a register unconditionally (e.g., assign r = a & b),
and (ii) dynamic assignments, which depend on control paths and
design states. Listing 2 shows an example.� �

1 assign a = in1 & in2;
2 assign b = in3;
3 if (in4) begin
4 c = a + b;
5 if (c > const1 && ^in3) out = const1;
6 end� �
Listing 2: Example of dependency-equation construction.

The expression to drive out to const1 (line 5) is expanded in
Eqn. 1 to include only input pins.

𝑐 > 𝑐𝑜𝑛𝑠𝑡1 && ∧𝑖𝑛3
= (𝑎 + 𝑏) && ∧𝑖𝑛3
= ((𝑖𝑛1 & 𝑖𝑛2) + 𝑖𝑛3) && ∧𝑖𝑛3 (1)

Once Boolean equations are derived, the SMT solver is used to
solve them. For example, a register 𝑅𝑒𝑔𝑐 depending on inputs
⟨𝑖𝑛1, 𝑖𝑛2, . . . , 𝑖𝑛𝑛⟩ is modeled as Boolean functionF (𝑖𝑛1, 𝑖𝑛2, . . . , 𝑖𝑛𝑛).
These dependency equations guide the mutation engine to gen-
erate input seeds that explore new states (Section 4.8).

𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑝 [2 : 0] ∧ 𝑛𝑟𝑠𝑡 (2)
In Listing 1, the control register state is linked to Eqn. 2. Since it
is sequential, SymbFuzz includes path constraints in the equations.
These guide the solver to produce values for each control path. The
steps illustrated in Section 4.4.1 and Section 4.4.2 are performed
before fuzzing is started. These steps help inmeasuring the coverage
d and generating constraints for seed mutation e in Figure 1.

4.5 Checkpoint Setup
In hardware design simulation, performing a full reset can lead to in-
efficiencies during verification. Re-simulating an already-explored
control flow branch with the same execution path results in re-
dundant computations without providing additional verification
value. To optimize this process and eliminate unnecessary repeti-
tions, SymbFuzz avoids complete resets, preventing re-evaluation
of identical functional paths.

To revisit RTL states without full resets, SymbFuzz uses check-
pointing during CFG-based fuzzing (Step a in Figure 1). A node’s
branching factor is the count of its immediate successor states, i.e.,
its outgoing edges. Control structures like if-else or case are not
treated as fixed two-way branches; instead, actual successors are
counted. Nodes with three or more successors are marked as high-
branching. Our pilot experiments suggest that a higher threshold
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(𝑇ℎ) reduces checkpoints but increases branch re-exploration. A
lower 𝑇ℎ adds more checkpoints but needs more memory.

SymbFuzz tracks CFG paths by recording input sequences. When
a new node is encountered, the input sequence is updated and
marked as the path for the current checkpoint. If a leaf node or
non-transitioning state is reached, SymbFuzz replays the sequence
to return to the checkpoint. Once all nodes from a checkpoint are
visited, SymbFuzz moves to the previous checkpoint. This process
is repeated until all nodes are covered.

For instance, starting at reset node 𝑁𝑟𝑠𝑡 , an input sequence 𝑆𝑒𝑞1
transitions the DUV to node 𝑁1, recording the path “𝑁𝑟𝑠𝑡 to 𝑁1.”
A subsequent sequence 𝑆𝑒𝑞2 transitions from 𝑁1 to 𝑁2, marking
the path. If 𝑁2 is a checkpoint, SymbFuzz efficiently revisits it from
𝑁𝑟𝑠𝑡 using 𝑆𝑒𝑞1 and 𝑆𝑒𝑞2.

4.6 Coverage Measurement
To improve coverage assessment, we use control registers to guide
traversal through the control flow graph (CFG). Each node repre-
sents a hardware state defined by current control register values,
while edges denote transitions between states.

Node Count: Let the design expose 𝑁 control registers and
let 𝑛 𝑗 be the number of legal encodings of register 𝑗 . The total
population of distinct nodes can therefore be expressed as,

# of nodes =

𝑁∏
𝑗=1

𝑛 𝑗 . (3)

For the ALU in Listing 1, state is three bits wide and OPmode is one
bit wide, giving Eqn. 4.

# of nodes = 8 × 2 = 16. (4)
An individual node is written as Eqn. 5 (𝑖1 ∈ [0, 7] and 𝑖2 ∈ [0, 1]).

𝐶 (𝑖1,𝑖2 ) = state𝑖1 · OPmode𝑖2 , (5)

Edge Coverage: Nodes may fan out to multiple successors. A
node with three or more outgoing edges is designated a check-
point. At such nodes, SymbFuzz also tracks edge coverage: a tuple
⟨edge ID,𝐶 (𝑖1,𝑖2 ) ⟩ is recorded for every transition, and coverage is
complete when each outgoing edge has been exercised at least once.

Run-time bookkeeping: After every simulation, SymbFuzz
scans the dump file, maps every covered node and edge onto the
CFG (Fig. 1 d), and decides whether progress has stalled. If new
nodes or edges are discovered, fuzzing proceeds autonomously;
otherwise, after a timeout, the seed-generation engine (Section 4.8)
applies SMT-driven UVM stimuli to steer the process toward unex-
plored nodes or untraversed edges.

Coverage Target: In SymbFuzz, the coverage target is defined
as the full Cartesian product of all possible outcomes of the condi-
tions within a control statement. For instance, if a control decision
depends on two conditions, such as 𝑟1 == 0 and 𝑟2 == 1, then the
total number of outcome combinations–or fanouts–is 2 × 2 = 4. In
the case of a case statement, such as the one in Listing 1 driven by
the register 𝑠𝑡𝑎𝑡𝑒 , all eight possible cases must be covered, resulting
in eight distinct branches.

Some control predicates do not divide the design space into a
small, well-defined set of outcomes. For example, if we consider
the condition 𝑟1 == 0 when 𝑟1 is a 32-bit register. Treating it as
two cases–𝑟1 = 0 and 𝑟1 ≠ 0–is not sufficient, since there might be

some non-zero values of 𝑟1 that can still circumvent the intended
logic and activate the “zero” branch. To account for these corner
cases, it is necessary to fuzz for 𝑟1 ≠ 0 values.

4.7 Path Progression Strategy
SymbFuzz utilizes UVM constraints and random bit-string gener-
ation [5] to create and mutate seeds for fuzzing the DUV. When
progress stagnates, it consults the coverage log to identify unex-
plored nodes. Based on this log, SymbFuzz determines the next
target node and identifies the control registers requiring modifica-
tion, as indicated by e in Figure 1.

To select the next node, SymbFuzz examines the fuzzer’s current
position in the CFG. If no further progress is made, it suggests the
input sequence is insufficient to modify control register values effec-
tively. In this case, SymbFuzz evaluates additional nodes or checks
for terminal points. If the search depth limit is not reached, an SMT
solver is employed to analyze dependency equations, prioritizing
constraints that enable exploration of the most new nodes. For
instance, if 𝐶𝑜𝑛𝑠𝑡𝑟𝐴 unlocks three new nodes and 𝐶𝑜𝑛𝑠𝑡𝑟𝐵 unlocks
four, SymbFuzz prioritizes 𝐶𝑜𝑛𝑠𝑡𝑟𝐵 for the UVM Sequencer.

If all sub-nodes of a checkpoint are explored, SymbFuzz moves to
its parent in the CFG, setting it as the new “current checkpoint.” The
solver then generates constraints to traverse new nodes from this
position. For example, in Listing 1, if SymbFuzz halts at line 13, it
activates the constraint solver to find the optimal ‘OPmode’ for path
selection. SymbFuzz evaluates path counts from the CFG node and
picks the ‘OPmode’ maximizing paths, defaulting to the smallest
Hamming distance in case of ties.

4.8 Seed Generation and Mutation
SymbFuzz uses UVM’s random bit string generation to create initial
fuzzing seeds. Operating within a defined time interval, SymbFuzz
then evaluates coverage. The fuzzer employs the ‘UVM Sequencer’
environment to generate and mutate seeds with constraints, as
illustrated in Figure 1 by f.

SymbFuzz generates and mutates seeds for fuzzing the DUV by
using UVM’s constraint mechanism [5]. When the fuzzer needs
assistance to explore new states, SymbFuzz analyzes the coverage
log to identify where the fuzzer has stalled. Based on this analysis,
SymbFuzz identifies the next target state along with the specific
control registers required to reach it. Using dependency equations
outlined in Section 4.4.2, SymbFuzz’s mutation engine employs an
SMT solver to solve these equations. This process enforces con-
straints in UVM’s random input generation, allowing SymbFuzz to
perform directed fuzzing and guide the fuzzer to unexplored states.� �

1 constraint OPcodeCTRL {op [3] == 1};� �
Listing 3: An example of constraints (in SystemVerilog).

The UVM testbench’s initial path selection imposes a constraint
that sets OPmode to 1, targeting the DUV with SymbFuzz fuzzing
in 8-bit operation mode (Listing 3).

4.9 Bug Identification
SymbFuzz employs property-based verification to detect security
vulnerabilities using a predefined set of security properties observed
via a UVM monitor. These properties are derived from the CVE and
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CWE databases to reflect practical security issues. Since SymbFuzz
targets security rather than functional correctness, a golden refer-
ence model is not sufficient. Many security bugs do not manifest as
output mismatches but as violations of internal invariants. There-
fore, SymbFuzz focuses on detecting property violations instead.
For instance, in AES designs, a typical flaw involves leakage of key
shares through the bus. A property (Listing 20) ensures that bus
outputs do not match key shares, preserving confidentiality.

Fuzzing specializes in effectively exploring shallow paths where
vulnerabilities often surface. During the exploration, the simulator
checks for property violations. When a violation occurs, the sim-
ulator logs the property name, simulation timestamp, waveform,
and input vectors starting from the reset activation. This data is
compiled into SymbFuzz’s report, R.

5 Evaluation and Results
Evaluation Setup:

We evaluated SymbFuzz on four RISC-V processors: Ibex (from
OpenTitan), CVA6, Rocket-Chip, and Mor1kxx. Ibex, used in the
OpenTitan SoC and featured in theHACK@DAC’24 competition [30,
46], offers a rich set of real-world security bugs, making it an ideal
benchmark for assessing SymbFuzz ’s detection capabilities. The ad-
ditional cores—CVA6 (an out-of-order RV64GC core), Rocket-Chip
(a widely used in-order RV64GC core), and Mor1kxx (a lightweight
OpenRISC-based design)—were selected to provide architectural
diversity and varying levels of complexity. This mix enables a com-
prehensive evaluation of SymbFuzz’s scalability, cross-architecture
applicability, and performance compared to existing fuzzing ap-
proaches. Across all benchmarks, SymbFuzz consistently detected
bugs and demonstrated improved coverage.

To ensure a fair performance comparison between SymbFuzz
and the fuzzers RFuzz, DifuzzRTL, and HWFP, each fuzzer was
run four times on OpenTitan. The average coverage and resource
utilization from these runs were computed, offering an unbiased
foundation for the performance analysis discussed in Section 5.2.
Evaluation PlatformDetails:Our server uses an AMDEPYC 7513
CPU (32 cores, 64 threads, 2.6 GHz, 128 MB cache). It includes 16
DDR4-3200 RDIMMs (64 GB each) in dual-rank mode at 3200 MT/s.
Simulations were performed using Xilinx Vivado [64].
Parameter Setup: The system saves simulation files every three
intervals, with each interval lasting 300 clock cycles. This setting
balances performance and resource usage, enabling SymbFuzz to
capture essential data for coverage analysis. All registers start in an
unknown (‘X’ or don’t care) state. Verification begins by asserting
the reset signal to bring the DUV to a known initial state. The
parameter choices were guided by pilot runs on smaller designs.
Evaluation Metrics: To assess SymbFuzz’s efficacy, we evaluate
three metrics: (1) bug detection, (2) coverage enhancement, and (3)
resource utilization. We compare SymbFuzz against existing fuzzing
techniques, defining coverage as unique combinations of control
register values and input patterns.

We benchmark SymbFuzz against Rfuzz, DifuzzRTL, and HWFP
using their publicly available implementations to evaluate perfor-
mance improvements over existing hardware fuzzing frameworks.
Furthermore, we compare SymbFuzz’s bug detection capabilities

with TheHuzz, PSOFuzz, and HypFuzz on three other benchmarks–
cva6, rocket-chip, and mor1kxx processors.

5.1 Detected Bugs
This section analyzes the bugs detected by SymbFuzz. We identified
17 bugs and mapped them to their corresponding CWE classes,
excluding those flagged by linters. As linters perform static checks
without execution, they fall outside our evaluation scope. We focus
on 14 bugs missed by at least one existing fuzzing framework.We do
not include the bugs, which could be detected by all tools, in order
to emphasize the prowess of SymbFuzz. Notably, one bug (Bug #01)
existed in the original version of OpenTitan and remained in its SoC
version. This bug has been officially added to the 2025 CWE data-
base. Table 1 lists the bugs by IP, submodule, location (column 3),
line count (column 4), CWE ID (column 5), and required input
vectors (column 6). Section 5.2 compares SymbFuzz’s performance
with Rfuzz, DifuzzRTL, and HWFP.

The verification properties are rooted in the vulnerability descrip-
tions provided by Common Vulnerabilities and Exposures (CVE) [1]
and Common Weakness Enumeration (CWE) [2]. These properties
capture broader patterns of vulnerabilities and are inherently gen-
eralized in nature. Register names and design-specific details are
adapted to align the properties with the DUV, ensuring applicability
without compromising their underlying generality.� �

1 always_ff @(posedge clk_i or negedge rst_ni) begin
2 if (! rst_ni) begin
3 q <= RESVAL; end
4 end else if (wr_en) begin
5 q <= wr_data; end end
6 ...
7 always_comb begin
8 wr_err = (reg_we & (( addr_hit [0] & (|( SCMI_PERMIT [0]

& !reg_be))) | ...
9 ...� �

Listing 4: Write request in the OpenTitan Mailbox.

Bug 1: A bug has been found in the Mailbox implementation
of the OpenTitan SoC. Here, the protocol fails to notify the host
when several write attempts to reserved addresses have been made.
Although the data written to these addresses is correctly discarded,
the host does not receive any feedback indicating the attempt, as
shown in Listing 4. This flaw allows an attacker to repeatedly write
to reserved addresses without any error or warning signals. Note
that this IP was generated using OpenTitan’s reggen tool and was
not part of the HACK@DAC’24 competition.� �

1 property writeReqCheck;
2 addr_hit [0] == 1 && !(| SCMI_PERMIT [0]);
3 endproperty� �

Listing 5: Security Property for write request.

SymbFuzz detects this bug using the property in Listing 5. Despite
being triggered around 370 times during execution, the module
failed to raise any error or warning signals. The bug has been
acknowledged as a new entry in CWE 2025 database.� �

1 ...
2 always_comb begin : p_fsm
3 unique case (fsm_state_q)
4 ...
5 endcase
6 ...
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Table 1: Details for the Detected Bugs in the Benchmark SoC.

Bug
No. Bug Description

Sub modules involved
CWE Number # of input vectors

Sub-Module Total LoC
01. No feedback for data error in the Mailbox. scmi_reg_top 735 *New Entry* 6.47 × 106

02. Undefined default state. lc_ctrl_fsm 735 CWE-1199 1.64 × 107

03. Enables the production function before testing in un-
locked states is completed.

lc_ctrl_signal
_decoder

384 CWE-1245 6.84 × 106

04. Key shares are leaked into the bus using key share offset. aes_reg_top 1880 CWE-1342 6.97 × 106

05. Not clearing pseudo-random data registers. aes_core and
aes_cypher_core

1867 CWE-459 8.24 × 105

06. AES masking operation with pseudo-random number
is always off.

aes_prng
_masking 234 CWE-1300 7.43 × 105

07. Blanking operation in OTBN is disabled. otbn_mac
_bignum 240 CWE-325 8.32 × 106

08. ROM control skips checking state. rom_ctrl_fsm 312 CWE-1269 6.82 × 106

09. Incomplete clear process in Power manager. pwr_mgr_fsm 542 CWE-1304 4.82 × 106

10. Not checking ROM integrity check flag. pwr_mgr_fsm 542 CWE-1304 4.82 × 106

11. The system cannot turn off the parity check. uart_rx 137 CWE-1257 6.82 × 106

12. Reseed Interval cannot be checked via the checker logic. csrng_reg_top 2042 CWE-1257 1.82 × 107

13. System Reset Controller has the wrong value for the
error flag.

sysrst_ctrl
_reg_top 7218 CWE-1320 1.56 × 107

14. Data flush upon receipt of the enable signal. otp_ctrl_dai 860 CWE-1266 8.14 × 106

7 end� �
Listing 6: Undefined default state.

Bug 2: SymbFuzz detected a missing default state in the 16-state
FSM of the Life Cycle Controller (LC_CTRL), which relies on the
16-bit register fsm_state_q, as shown in Listing 6.

To detect this bug, the property used is shown in Listing 7. Here,
the property defines that the value of register 𝑓 𝑠𝑚_𝑠𝑡𝑎𝑡𝑒_𝑞 is re-
quired to be one of the defined values.� �

1 property read_key;
2 !$isunknown(fsm_state_q);
3 endproperty� �

Listing 7: Security Property for FSM.

Bug 3: The LC_CTRL IP also contained this bug. Due to this
bug. production state functions execute in the unlocked state, as
shown in Listing 8 (lines 4-6), where LC_CTRL initiates production
functions before completing all tests in the final unlocked state.� �

1 ...
2 LcStTestUnlocked0 ,
3 ...
4 LcStProd: begin
5 ...
6 end
7 LcStTestUnlocked7: begin
8 ...� �
Listing 8: Production functions before unlocked states.

This bug was identified by SymbFuzz using the property in List-
ing 9, which requires that the Non-volatile Memory (NVM) debug

state must be disabled unless the LC_CTRL is in the Return Material
Authorization (RMA) state.� �

1 property read_key;
2 lc_state_i != LcStRma |-> !lc_nvm_debug_en;
3 endproperty� �

Listing 9: Security Property for function checking.

Bug 4: The AES module leaks key values via bus output (List-
ing 10) when key_share offset flag is set to ‘HIGH.’ Instead of return-
ing 0, the module exposes key shares, creating a vulnerability.� �

1 always_comb begin
2 reg_rdata_next = '0;
3 unique case (1'b1)
4 ...
5 addr_hit [1]: begin
6 reg_rdata_next [31:0]= reg2hw.key_share0 [0].q;
7 end
8 ...
9 endcase
10 ...
11 end� �

Listing 10: Key leak Bug in AES.� �
1 property read_key;
2 tl_o.d_data != $isinside(reg2hw.keyshare.q);
3 endproperty� �
Listing 11: Security Property for read keyshare value.

To detect this bug, we have used the property shown in Listing 11.
This property defines that the output data to the bus can not be
equal to one of the key shares.
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� �
1 always_comb begin: data_in_reg_clear
2 for (int i = 0; i < NumRegsData; i++) begin
3 hw2reg.data_in[i].de = data_in_we;
4 end end� �

Listing 12: Wiping data leaks secret information.

Bug 5: SymbFuzz identified a bug in both the AES core and the
cipher core within the AES module. As illustrated in Listing 12, this
bug causes the AES module to erroneously replace residual data in
the registers with input data instead of pseudo-random values. This
flaw introduces a security vulnerability, enabling the extraction of
input data through the use of the wipe command.� �

1 property Data_clear;
2 for (int i = 0; i < NumRegsData; i++) begin
3 hw2reg.data_in[i].de != $past(hw2reg.data_in[i].

de);
4 end endproperty� �

Listing 13: Security property for wipe data check.

The bug was effectively identified using the property in List-
ing 13, which asserts that the data register must not retain its
previous value after a ‘clear’ command.� �

1 assign data_o =
2 (SecAllowForcingMasks && force_masks_i) ? '0 :
3 phase_q ? '0 : '0;� �

Listing 14: Always-off masking with PRNG.

Bug 6: This bug also appears in the AES module, where masking
with pseudo-random numbers is always disabled by unconditionally
setting it to 0, as shown in Listing 15.� �

1 assign data_o =
2 (SecAllowForcingMasks && force_masks_i) ? '0 :
3 phase_q ? '0 : '0;� �

Listing 15: Always-off masking with PRNG.

The bug was identified using the property in Listing 16, which
states that when phase_q is HIGH, data_o must equal perm[0] con-
catenated with perm[NumChunks-1:1].� �

1 property Data_clear;
2 phase_q |-> data_o == {perm[0], perm[NumChunks

-1:1]}; endproperty� �
Listing 16: Security property for masking condition check.

Bug 7: A bug was discovered in the OpenTitan Big Number
(OTBN) accelerator that keeps the blanking operands continuously
active, rendering them transparent. Consequently, the blanking op-
eration is effectively disabled, causing the OTBN to emit a detectable
power trace during its operation, as illustrated in Listing 17.� �

1 prim_blanker #(. Width(WLEN)) u_operand_b_blanker (
2 .in_i (operation_i.operand_b),
3 .en_i (1'b1),
4 .out_o(operand_b_blanked)
5 );� �

Listing 17: The blanking operation in the OTBN is disabled.

This bug was detected using the property shown in Listing 18.
This property ensures that the blanking operation must be active in
cases where the OTBN processor is not engaged in MAC operations
or utilizing the ALU.

� �
1 property blanking;
2 !mac_predec_bignum |-> !u_otbn_mac_bignum.

u_operand_b_blanker.out_o;
3 endproperty� �
Listing 18: Security property for blanking operation.

Bug 8: The ROM control IP’s FSM contains a bug that skips the
Check state, directly transitioning from task completion to the Done
state, bypassing critical verification (as can seen in Listing 19).� �

1 KmacAhead: begin
2 if (counter_done) state_d = Done; end� �
Listing 19: Checking state skipping Bug in ROM control.

The security property in Listing 20 identifies this bug. It requires
the past value of to be checking when state_d equals Done.� �

1 property read_key;
2 @(state_d)
3 state_d ==done|->$past(state_d)== checking;
4 endproperty� �
Listing 20: Security property for FSM operation check.

Bug 9: A bug in the Power Manager IP of the SoC prevents
proper data clearing for always-on IP cores. Instead of waiting
for reset_reqs_i[ResetMainPwrIdx], clr_slow_req_o is set to HIGH,
prematurely halting the clearing process, as shown in Listing 21.� �

1 FastPwrStateResetWait: begin
2 rst_lc_req_d = {PowerDomains {1'b1}};
3 clr_slow_req_o = 1'b1;� �
Listing 21: Incomplete “clear” Bug in Power Manager.� �

1 property read_key;
2 @(state_q)
3 state_q == FastPwrStateResetWait |->
4 clr_slow_req_o == reset_reqs_i[ResetMainPwrIdx ];
5 endproperty� �

Listing 22: Security Property for Power Mgr. reset wait time.

To identify this bug, we used the property in Listing 22, which
asserts that in the FastPwrStateResetWait state, the clear request
must equal reset_reqs_i[ResetMainPwrIdx].� �

1 FastPwrStateRomCheckGood: begin
2 state_d = FastPwrStateActive; end� �

Listing 23: Not checking ROM integrity check flag.

Bug 10: This bug was also detected in the Power Manager IP of
the SoC. Due to this bug, the power manager does not check the
integrity of the ROM data before transitioning to the next step, as
seen in Listing 23. Here, the power manager is supposed to check
the integrity flag “rom_intg_chk_good”.� �

1 property intg_check;
2 !( state_q == FastPwrStateRomCheckGood) || !

mubi4_test_true_strict(rom_intg_chk_good) |->
state_d != FastPwrStateActive; endproperty� �

Listing 24: Security property for checking state transition.
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Table 2: Comparison of bug detection by the fuzzers.

Bug No. SymbFuzz RFuzz DifuzzRTL HWFP
01. ✓ ✗ ✗ ✗

02. ✓ ✗ ✓ ✓

03. ✓ ✗ ✓ ✓

04. ✓ ✓ ✗ ✗

05. ✓ ✗ ✗ ✗

06. ✓ ✗ ✗ ✗

07. ✓ ✗ ✓ ✓

08. ✓ ✗ ✓ ✓

09. ✓ ✗ ✗ ✗

10. ✓ ✗ ✓ ✓

11. ✓ ✗ ✓ ✗

12. ✓ ✓ ✗ ✗

13. ✓ ✗ ✓ ✗

14. ✓ ✗ ✓ ✓

This bug was detected by the property shown in Listing 24. This
property mandates that if the Power Manager is in fast power state
checking mode, it must check the integrity of the ROM before
activating the fast power state.

Bug 11: SymbFuzz detected a bug in the UART module where
parity is checked even when disabled by the host, causing false
error flags. In Listing 25, the error flag is raised if the received data
is valid and the XOR of its bits with the parity odd bit is HIGH.� �

1 assign rx_parity_err = rx_valid_q & (^{ sreg_q [9:1],
parity_odd });� �
Listing 25: UART always parity check on.

Using the property elaborated in Listing 26, SymbFuzz detected
this bug in the benchmark. The property asserts that when the
rx_parity_err is raised HIGH, the parity_enable should also be HIGH.� �

1 property read_key;
2 @(rx_parity_err)
3 rx_parity_err |-> parity_enable;
4 endproperty� �

Listing 26: Security property for UART error Flags.� �
1 always_comb begin
2 reg_we_check = '0;
3 ...
4 reg_we_check [7] = 1'b0;
5 ...
6 reg_we_check [16] = 1'b0;
7 end� �

Listing 27: ‘Reseed interval enable’ check Bug.

Bug 12: SymbFuzz identified a bug in the SoC’s Cryptograph-
ically Secure Random Number Generator (CSRNG) module. The
checkers fail to access the eighth bit of reg_check, designated as the
“reseed interval enable” flag, preventing proper verification of the
reseeding function (Listing 27).

To detect this bug, the security property illustrated in Listing 28
was used. This property dictates that the value of reg_we_check

should contain a reseed interval enable flag, which can be later
checked using the checker logic.� �

1 property read_key;
2 @(reg_we_check)
3 reg_we_check [7] == reseed_interval_we;
4 endproperty� �
Listing 28: Security property for ‘reseed interval enable’.

Bug 13: This bug was identified in the “System Reset Controller”
as shown in Listing 29. It prevents the write error flag from be-
ing raised, which is essential for enabling register writing. The
parameter should be set to 4′𝑏0001 to yield a HIGH value when
ORed. However, it is incorrectly set to 4′𝑏0000 (Line 3 in Listing 29),
resulting in the error flag not being raised (Line 5 in Listing 29).� �

1 parameter logic [3:0] SYSRST_CTRL_PERMIT [43] = '{
2 ...
3 4'b 0000, // index[ 4] SYSRST_CTRL_REGWEN
4 ...}
5 wr_err = (reg_we &
6 (...
7 (addr_hit[ 4] & (|( SYSRST_CTRL_PERMIT[

4] & !reg_be))) |� �
Listing 29: Defining a wrong value for parameter.� �

1 property error_flag_check;
2 reg_we || addr_hit [4] || (|( SYSRST_CTRL_PERMIT[ 4]

& !reg_be) |-> wr_err; endproperty� �
Listing 30: Security property for error flag checking.

This bug was detected using the property in Listing 30, which
asserts the error flag when any condition is TRUE.

Bug 14: SymbFuzz detected this bug in the “One Time Pro-
grammable” (OTP) memory controller IP that causes it to wipe data
upon receiving an enable signal, as shown in Listing 31.� �

1 if (data_en) begin
2 data_q <= '0;� �
Listing 31: Data cleared when eneable signal is received.

The bug was identified by rigorously applying the verification
property outlined in Listing 32, which systematically checks and
ensures the accuracy of the output data.� �

1 property DataCorrectChck;
2 data_en && (data_sel == ScrmblData) |-> (data_q ==

scrmbl_data_i)
3 endproperty� �

Listing 32: Security property for checking data correctness

5.2 Performance Analysis
This section compares SymbFuzz’s bug detection capabilities with
prior hardware fuzzers–RFuzz [35], DifuzzRTL [29], and HWFP [61]
–using publicly available source codes. Table 2 lists the bugs from
Section 5.1, indicating which fuzzers detected each case. We only
discuss bugs missed by one or more fuzzers, including SymbFuzz.

As shown in Table 2, SymbFuzz detects all the bugs, whereas
RFuzz fails to identify 12, DifuzzRTL misses 6, and HWFP overlooks
8. Furthermore, SymbFuzz discovered a previously undetected bug
in the non-buggy version of the OpenTitan IP, a flaw that had been
missed in earlier studies (as elaborated in Bug #1 in Section 5.1).
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(b) Variance of coverage while fuzzing the benchmark.

Figure 4: Coverage comparison and variance profile.

Table 1 highlights the advantages of assertion-based verification
over GRM-based verification for security-critical applications. In
Bug #4, although the DUV output aligns with the GRM output
when reading a register, this alignment inadvertently exposes key
shares, thereby bypassing error detection mechanisms that rely
solely on GRM-based verification. This issue represents a security
vulnerability, as the bus output should not reveal sensitive infor-
mation, such as the key or key shares. SymbFuzz plays a crucial
role here by effectively detecting these discrepancies. Notably, only
SymbFuzz and RFuzz are capable of identifying hardware-specific
vulnerabilities, as demonstrated in Bug #4.

Furthermore, Bug #06, which disables a critical masking opera-
tion, is undetected by Verilator and AFL-based fuzzers like (Rfuzz,
DifuzzRTL, and HWFP). RFuzz also fails to detect Bug #08 due to
its coverage approach, which relies on multiplexers and lacks the
coverage precision necessary for detection. Moreover, none of the
fuzzers identify Bug #11, where parity checks are mostly enabled.

SymbFuzz exhibits a balanced resource profile, using approxi-
mately 4% more memory than DifuzzRTL and 7% more than RFuzz,
yet 7% less than HWFP. For CPU efficiency, SymbFuzz performs
comparably to RFuzz but is 33% and 54% more efficient than Difuz-
zRTL and HWFP, respectively, on identical hardware. While RFuzz
is the most resource-efficient, its lower detection performance, as
shown in Table 2, reveals a trade-off between efficiency and de-
tection accuracy. Thus, SymbFuzz provides a balanced approach,
achieving both effective bug detection and efficient resource usage
across memory and CPU metrics.
Observation: SymbFuzz outperforms existing tools by detecting
security vulnerabilities due to not relying on GRM-based differen-
tial testing, which is primarily suited for functional verification.

5.3 Coverage Analysis
In this study, we utilized control registers to assess coverage metrics
comprehensively. Each branch within the control path is regarded
as a distinct coverage point for SymbFuzz. When multiple control
path combinations occur simultaneously, each unique combination
of selected paths is also considered a coverage point. To ensure a
fair comparison with SymbFuzz, we used the same coverage points
as prior works (i.e., Rfuzz [35], DifuzzRTL [29], HWFP [61]).

Figure 4a compares the coverage obtained by SymbFuzz com-
pared to existing approaches, demonstrating its superiority. With
9.1× 106 input vectors, SymbFuzz achieved approximately 6% more
coverage than DifuzzRTL [29], about 15% more than Rfuzz [35], and
around 10% more than HWFP [61]. These results highlight Symb-
Fuzz’s effectiveness in outperforming existing fuzzers in terms of
coverage, enhancing its potential to uncover latent bugs.

Moreover, all evaluated fuzzing approaches, including SymbFuzz,
significantly outperform UVM random testing in terms of coverage
gain. Specifically, SymbFuzz achieves a 6.8× speed-up in reaching
equivalent functional coverage. As shown in Figure 4a, UVM ran-
dom testing saturates at around 2.7 × 106 input vectors, a point
reached by SymbFuzz and other fuzzers with only 1.2 × 106 inputs.
This performance gap stems from a core limitation of UVM random
testing: it generates inputs without any guidance, relying on the
randomness to discover new states, resulting in a slow and ineffi-
cient exploration. Furthermore, even after 72 hours, UVM testing
failed to achieve full coverage, saturating between 88% and 94%
across ten runs. In contrast, SymbFuzz uses symbolic execution to
actively target unexplored states, enabling faster, more directed
coverage gains with reduced computational cost. These results
underscore SymbFuzz’s practical effectiveness and scalability in
modern hardware security verification workflows.

Figure 4b illustrates the variance in coverage for SymbFuzz across
a range of input vectors, specifically from 4 × 106 to 8.5 × 106. This
range was chosen since, at the very start of the fuzzing process, the
variance is extremely high due to the randomness of initial cover-
age exploration, which obscures the effective variance trends. Over
time, as fuzzing progresses and approaches stagnation, the vari-
ance significantly decreases, reflecting a convergence in the paths
explored by each fuzzer. Consequently, this selected range offers a
more accurate view of how randomness influences variance with-
out the skew from initial, high-variance fluctuations. Within this
range, SymbFuzz consistently achieves higher coverage gains than
Rfuzz, DifuzzRTL, and HWFP. Moreover, since no predefined seed
was used in any of the runs, each fuzzer independently explored
diverse paths, further highlighting the impact of randomness.
Observation: SymbFuzz achieved up to 15% higher coverage than
DifuzzRTL, Rfuzz, and HWFP, highlighting its potential for better
exploration and bug detection in hardware security verification.
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Table 3: Benchmark Details.

Benchmark Code Size
(LoC)

CFG Size Dependency
Eqn. Generated

Latency (minutes) Constraints
GeneratedNodes Edges

OpenTitan 1.5million 1424 4863 300∼350 ≈ 250 ≈ 600
CVA6 201086 576 1728 100∼120 ≈ 60 ≈ 200

Rocket-Chip 38500 (Scala) 617 1832 100∼120 ≈ 60 ≈ 200
Mor1kx 201832 589 1688 100∼120 ≈ 60 ≈ 200

5.4 Benchmarking with Additional Research
In this section, we show that SymbFuzz effectively identifies bugs
that were previously detected by other fuzzing methods, including
TheHuzz [31], PSOFuzz [14], and HypFuzz [15]. Since the source
codes for these tools are not publicly available, we were unable to
evaluate them directly on the bugs listed in Table 1. To demonstrate
SymbFuzz’s bug detection capability, we identified bugs found by
these tools in three processors—CVA6, Rocket Core, and mor1kx.

We adopt the enumeration from HypFuzz [15] to categorize pre-
viously reported bugs for clarity and consistency. HypFuzz and
SymbFuzz detect Bugs V1–V3, while all fuzzers identify Bugs V4–
V11. Bug V1 poses a critical reliability risk, as no exception is raised
on invalid memory access, potentially causing undefined behav-
ior. Bug V2 stems from the incorrect decoding of multiplication
instructions, leading to execution errors. Bug V3 involves access
to unallocated CSRs, returning undefined values instead of errors,
thereby compromising system state integrity.
Observation: SymbFuzz was able to detect all bugs that were
reported in other existing SoC fuzzing approaches (TheHuzz,
PSOFuzz, HypFuzz).

5.5 Discussion
5.5.1 Design Rationale. Key design choices were made to ensure
efficient, scalable, and security-focused verification:
(1) Security Beyond Golden Models: Functional correctness does not
ensure security. As seen in Table 1 (Bug #4), secrets can leak even
when outputs match the golden reference. SystemVerilog assertions
capture such violations at runtime (e.g., Bug #1, #4, #6), revealing
hidden flaws missed by golden-model checks.
(2) Hybrid Fuzzing for Coverage: Fuzzing is fast but often shallow.
Symbolic execution is deeper but slower. Our hybrid approach uses
fuzzing for general exploration and applies symbolic reasoning only
at hard-to-reach branches, improving both speed and depth.
(3) Selective Symbolic Analysis in SymbFuzz: Concolic testing strug-
gles with path explosion. SymbFuzz limits symbolic reasoning to
critical control registers and uses checkpoints to manage state. This
enables efficient deep exploration with low solver overhead.

5.5.2 Scalability. SymbFuzz scales efficiently by combining SMT-
guided state pruning with checkpoint-based replay. This avoids full
flip-flop tracking and instead grows with control-register tuples.
On cores like Ibex, Rocket, and CVA6 (≈110k flip-flops), SymbFuzz
explored 1.1–2.0×104 edge–state pairs, doubled functional coverage,
and converged 6–7× faster than random UVM fuzzing. Checkpoint
replays finish in microseconds, avoiding full reboots. Table 3 shows
code size, CFG size, equations, latency, and constraints. The results
confirm that SymbFuzz scales across diverse runs.

5.5.3 ExtendingApplicability toDetectManufacturing Faults.
SymbFuzz was developed for detecting security flaws, but it can also
identify faults from manufacturing defects. This requires using a
golden referencemodel instead of assertions and comparing outputs
during fuzzing. Its core features–checkpointing and dependency-
guided CFG traversal–remain effective, showing its adaptability for
both security and reliability verification. In the future, we intend to
analyze the performance of SymbFuzz on manufacturing defects
on myriad processor architectures.

5.5.4 False Positives and False Negatives. Within the tested
designs and time limits, SymbFuzz achieved coverage comparable
to or better than its peers. However, RTL designs have large corner-
case spaces, so defects requiring specialized analysis may still exist,
though none appeared in our current experiments. In the future,
we intend to augment SymbFuzz by analyzing emerging processor
architectures, including Deep Learning hardware.

5.5.5 Architectural Influence on Bug Profiles. Our evaluation
in Section 5 shows that all bugs in the in-order Ibex and Rocket
benchmarks involve either instruction sequencing or CSR han-
dling. These cores execute instructions strictly in order and lack
speculative features such as reorder buffers or branch-recovery
logic. Thus, our explored architectural bugs are limited to stall-or-
flush handshakes and fast CSR accesses and do not involve any
speculation-related vulnerabilities.

6 Conclusion
In this paper, we present SymbFuzz, a novel hybrid hardware fuzzing
framework developed with UVM (as mentioned in Section 4), de-
signed to integrate seamlessly into commercial hardware design
flows. SymbFuzz leverages coverage-guided fuzzing with symbolic
execution to efficiently explore control flow graph nodes, enhancing
bug detection and test coverage. When evaluated on a commercial-
grade SoC, SymbFuzz identified 14 defects, six of which were pre-
viously undetectable by conventional hardware fuzzing methods.
Notably, SymbFuzz uncovered a previously unknown vulnerability
in an IP from the OpenTitan SoC, which has since been added to
the CWE 2025 database. Furthermore, SymbFuzz increased test cov-
erage by 2 × 104 coverage points without requiring any changes
to the hardware execution process. SymbFuzz was successful in
detecting vulnerabilities identified by prior hardware fuzzing ap-
proaches. These results demonstrate that SymbFuzz outperforms
existing approaches in terms of bug detection and coverage, making
it a promising candidate for integration into the SDL. SymbFuzz
demonstrates its potential as a valuable framework for commercial
SoC design flow, streamlining the security verification processes
and enhancing SoC robustness against vulnerabilities.
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