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Abstract 

As a result of these tooling and framework gaps in Edge computing virtualization, researchers have 
turned to other open-source initiatives to improve the security of mainstream hypervisors, like KVM1 
and Xen2, through Protected KVM and Dom0-less Xen. But these approaches tend to sacrifice either 
the performance or the feature set of the underlying hypervisor. 

Microkernel-based designs like seL4 promise to address security from conception to 
implementation. seL4 can also be implemented as a base hypervisor with sufficient native and 
virtual machine applications to support the large number of use cases in Edge computing devices. 
To achieve the rich support for broad virtual machine environments, a robust virtual machine 
monitor (VMM) will be required to tune seL4 for these use cases. 

We argue that a community-wide effort is needed to build out the standardized VMM infrastructure 
required to customize seL4 for various use cases. Here we elaborate on some of the design 
principles and the potential feature set we need to collaborate on to support new high-assurance 
use cases cost-effectively. 

Security and resiliency are often approached as an afterthought in 
system design. Developers write code to run on various operating 
systems and then try to harden all the different vulnerabilities and 
data leaks that may occur after the fact. This approach is costly and 
spends considerable resources trying to fix problems after the fact.

Virtualization can play an essential role in providing security to computational systems by isolating 
execution environments. Virtualization solutions through different Hypervisors have extensively 
been deployed in Cloud and High-Performance Computing as a way to share the compute 
resources in these complex environments. However, only a few hypervisors were designed to be 
deployed at the edge of the network, in devices with fewer computation resources when compared 
with servers in the Cloud. Among the few lightweight software that can play the hypervisor role, 
seL4 microkernel stands out by providing a small Trusted Computing Base and formally verified 
components, enhancing its security.

Researchers have been exploring ways to start with more secure microkernels like L4 and later seL4. 
Over the last few years, the main development efforts have been put into increasing the maturity 
of the seL4 kernel itself and not the tools and frameworks that can be hosted on top of it. As such, 
seL4 lacks the proper support required for many Edge computing virtualization use cases. Thus, a 
security engineering cost is incurred in adapting seL4 to secure these use cases. 
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1	 https://www.linux-kvm.org/page/Main_Page
2	 https://xenproject.org/
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Why a standardized seL4 VMM?

A standard Virtual Machine Monitor 
could help address could help satisfy the 
business goals of seL4 ecosystem members 
in a standard way. This effort would 
benefit from the input and authorship 
of seL4 integrators [3], which are active 
commercially focused teams in the seL4 
ecosystem, including but not limited to Cog 
Systems3, Technology Innovation Institute 
(TII)4, Hensoldt Cyber5, DornerWorks6, 
and NIO7. Each of those businesses has 
different goals, but there is still a common 
baseline and philosophy binding them 
around the VMM when using seL4 as a 
hypervisor. 

At a high level, there are gaps in the seL4 
stack, specifically the VMM, userspace, 
and tooling, which complicate matters 
for integrators attempting to meet 
real-world customer use cases. Not all 
business opportunities require a solution 
using a VM architecture, but those that 
do quickly become complex and would 
benefit enormously from an established 
standard or reference baseline. The lack of 
a robust and consistent VMM for seL4 has 
created a highly fractured environment. 
Most integrators have their own specialized 
customer use cases, and they have found 
that the quickest path is to use a forked 
and modified VMM. 

This practice may have short-term benefits 
to that integrator. Still, it does not allow the 
community to benefit from commonality 
and guarantees that the fork will quickly 
get old and out of sync with the mainline. 
For instance,  there will be VMM fork 
features that overlap, and which should 
be implemented in a standard way for the 
sake of ongoing community benefit and 
maintenance.

To enroll the community 
in building a standard 
VMM as a shared effort by 
highlighting the discussion 
about the challenges and 
potential directions of a 
standard VMM.

To present the potential 
key design principles and 
feature set support toward 
seL4 VMM standardization. 
The items shown in this 
article can be the basis for an 
extended version with a more 
comprehensive list of required 
properties and features.

So, researchers developed L4 for more 
specialized applications with a need for 
high assurance and efficiency. It works well 
in tightly controlled environments where 
there is no need for lots of services. For 
example, Qualcomm uses a custom version 
of L4 in their modem and DSP solutions.

In 2006, researchers at the NICTA 
leveraged recent advances in the L4 
microkernel to design a new secure 
microkernel called seL4 that is provably 
secure. In 2014 NICTA and General 
Dynamics open-sourced the kernel in the 
hopes it would drive innovation in secure 
systems.
 
seL4 is a small and simple microkernel-
based type-1 hypervisor. It follows the 
principle of least privilege with capability-
based access control mechanisms, 
performant inter-process communication 
channels, and userspace services [1]. seL4 
works in two different modes, although 
sharing the same concepts, either as an 
Operating System (OS) or as a Hypervisor, 
depending on a set of design-time 
configurations. The microkernel standalone 
requires userspace services and VMMs that 
run along with guest OSes. 

Using seL4 in complex production 
environments[2] brings new challenges, 
which are often quite different from 
research-oriented environments. There is a 
problem of fragmentation since different 
companies are using their own closed-
source tools and userspace libraries. 

As a community, a VMM standard can be created which is consistent, maintainable, and works 
for all the varied business focuses. Critically, this effort must get the conceptual buy-in of the seL4 
Foundation and the larger seL4 community for it to be successful going forward. Additionally, a 
reference implementation, properly maintained, would help to solidify and promote the concept 
and to provide consistency to complex projects using seL4.  

In light of this, the present article has the following goals:

The most popular kernels 
were conceived for feature-
rich environments like laptops 
and servers. But supporting 
all these features consumes 
considerable overhead and is 
not suitable for constrained 
devices in embedded systems. 
This is important for use 
cases such as building secure 
mobile phones, drones, edge 
devices, and modems. Existing 
kernels like KVM are monolithic 
systems with a large Trusted 
Computing Base (TCB), 
making it less secure and less 
efficient to run on constrained 
devices. Monolithic systems 
are also not modular which 
increases the development 
and maintenance costs of 
their solutions on embedded 
devices.
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3	 https://cog.systems/
4	 https://www.tii.ae/secure-systems
5	 https://hensoldt-cyber.com/
6	 https://dornerworks.com/
7	 https://www.nio.com/
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Why seL4?

seL4 is used and being developed by 
a growing number of companies and 
hobbyists, with only a few hypervisors, 
such as KVM and Xen, outperforming seL4 
in this regard. Most of the Open-Source 
Hypervisors (OSS) have a small, engaged 
community, and/or the development 
solely depends on the interest of a single 
individual or company. Community is one of 
the most important aspects for a successful 
open-source operating system, and 
hypervisor. Moreover, there are hypervisors 
being developed by a single company. In 
this case, the development takes place in 
private repositories, and only the selected 
features are published as snapshots to 
public repositories. The dominance of 
a single company makes these projects 
unattractive for other companies. This, 
for example, hinders the development of 
architecture as well as hardware support 
in general. In seL4 environment, the seL4 
foundation8[6] ensures neutrality, and all 
seL4 development takes place on public 
repositories.

Many of today’s hypervisors have as their 
main strength other aspects than security. 
This impacts their architecture (e.g., 
monolithic) and design decisions. In this 
regard seL4 with it’s fine-grained access 
model and strong isolation guarantees 
outperform others in terms of security. The 
formal verification further adds proof and 
credibility and makes it even more unique. 
Thus, seL4 has a solid security model and 
story, backed by formal verification.

seL4 is a general-purpose microkernel with 
proven real-time capabilities that provides 
system architectural flexibility.  
The security and safety critical components 
can be run natively in the user space of 
seL4 hypervisor. This also applies to the 
components with real-time requirements. 
With the advent of the seL4 Mixed 
Criticality System (MCS) kernel, seL4’s 
strong spatial and temporal isolation 
guarantees that the system components - 
and untrusted VMs - are unable to interfere 
with each other.

seL4 is a member of the L4 
family of microkernels that 
goes back to the mid-1990s 
[1][4]. It uses the concept and 
mechanism of capabilities, 
which allows fine-grained 
access controls and provides 
strong isolation guarantees. 
The Trusted Computing Base, 
or TCB, with seL4 is small 
9-18 kSLOC, depending on 
CPU architecture, and it was 
the first general purpose OS 
to be formally verified. seL4 
also features very fast IPC 
performance - something 
that is very important for 
microkernels. According to 
seL4 FAQ [5], it is the fastest 
microkernel in a cross-address-
space message-passing (IPC) 
operation.

09

8	 https://sel4.systems/Foundation/home.pml
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Virtualization and seL4 VMM

Virtualization

The Virtual Machine Monitor (VMM) 
is a piece of software that interacts 
with the hypervisor in the virtualization 
environment. It has its own responsibilities 
apart from the hypervisor. The VMM 
is a user space program that provides 
emulation for virtual devices and control 
mechanisms to manage VM Guests (virtual 
machines) [15]. The VMM enables the 
virtualization layer to create, manage, 
and govern operating systems [16]. By 
running at the user space, the VMM 
runs at privilege level EL0 on ARM and 
U-mode on RISC-V. Examples of VMMs are 
Firecracker11, crosvm12, QEMU13. Depending 
on the hypervisor and on the characteristics 
of the deployed environment, it is possible 
to have one or multiple VMMs. A common 
approach is to have one VMM per each 
operating system Virtual Machine. 

Each operating system sits inside a Virtual 
Machine (VM). A VM behaves like an actual 
operating system from the point of view of 
the user, being possible to run applications 
and interact with it [17]. From the point of 
view of the hypervisor, a VM has access to a 
specific set of hardware resources managed 
by the hypervisor. It is the VMM that makes 
the bridge from the hardware resources 
of the hypervisor to make them available 
to the VM by managing the backend 
operations [18]. From the scalability 
perspective, it is possible to have multiple 
VMs in a virtualization environment, where 
each VM is isolated from the other by 
principle. The quantity of VMs depends on 
the amount of physical resources available 
for such an environment.

The hypervisor is a software layer 
responsible for managing the hardware 
and explicitly making it available to the 
upper layers [12]. It has privileged access 
to the hardware resources and can allocate 
it accordingly to the operating systems. 
Examples of hardware resources or devices 
are: storage memory, network device, I/O 
devices, etc. The hypervisor is responsible 
for memory management, scheduling 
tasks, basic Inter-Process Communication 
(IPC). For security reasons, the hardware 
should not be shared directly by different 
operating systems. However, the hypervisor 
can provide virtual copies of the same 
hardware to other operating systems [13]. 
Many computer architectures have specific 
privilege levels to run the hypervisor, such 
as EL2 on ARM and HS-mode on RISC-V. 
Examples of hypervisors are Xen, KVM, 
ACRN9, Bao10, and seL4. 

The hypervisors can be categorized into 
type-1 and type-2. The type-1 hypervisors 
runs on bare metal (i.e., directly on the host 
machine's physical hardware) and type-2 
hypervisors, also called hosted hypervisors, 
runs on top of an operating system [14]. 
The type-1 hypervisors are considered more 
secure by not relying on a host operating 
system. KVM is an example of type-2 
hypervisor by running on Linux kernel while 
seL4 is an example of type-1 hypervisor. 

Virtualization is a technique 
that allows several operating 
systems to run side-by-
side on given hardware [7]
[8]. Virtualization brings 
different kinds of benefits 
to the environment that it is 
deployed. One of the benefits 
would be the heterogeneity 
that it can bring, being possible 
to deploy various operating 
systems and applications 
in the same hardware [9]. 
Moreover, it improves the 
system's security by achieving 
security by separation [10]
[11]. It is achieved as each 
operating system has its own 
space, not having an explicit 
connection with others, 
keeping software instances 
isolated. Nevertheless, 
virtualization requires a 
software layer responsible for 
system management, known 
as a hypervisor.

The Figure 1 presents a high-level overview of the components present in a virtualization 
environment: hardware resources or devices, hypervisor, Virtual Machine Monitor, and Virtual 
Machine. As we can have different hypervisors, the configuration of the upper layers (VMM and 
VM) will rely on the chosen hypervisor.

Figure 1  Overview of a virtualization environment
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9	 https://projectacrn.org/
10	http://www.bao-project.org/
11	https://firecracker-microvm.github.io/
12	https://chromium.googlesource.com/chromiumos/platform/crosvm/
13	https://www.qemu.org/
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Related hypervisors and VMMs

runs Linux to manage other guests, named 
DomU14. A DomU is the counterpart to 
Dom0; it is an unprivileged domain with (by 
default) no access to the hardware. DomU’s 
use Dom0’s para-virtualized services 
through Xen PV calls. Recently, the Dom0-
less variant was introduced. With Dom0-
less15, Xen boots selected VMs in parallel on 
different physical CPU cores directly from 
the hypervisor at boot time. Xen Dom0-less 
is a natural fit for static partitioning, where 
a user splits the platform into multiple 
isolated domains and runs different 
operating systems on each domain. 

Traditionally, KVM and Xen hypervisors 
were designed to be deployed at the Cloud 
Computing level to provide virtualization 
to high-density machines. However, recent 
solutions were developed to use those kinds 
of hypervisors also at the Edge level [23] 
[24], being able to have such virtualization 
solutions in devices with less processing 
power than the servers at the Cloud [25] 
[26] [21]. There are also hypervisors that 
were designed in a lightweight manner, 
with the intention to be applied in resource-
constrained environments at the Edge level. 
Examples of lightweight hypervisors are 
Bao [27] and ACRN [28], among others. 

KVM relies in user space tools such as the 
Quick Emulator (QEMU) [30] to serve as 
VMM and instantiating virtual machines. 
In the KVM paradigm guests are seen by 
the host as normal POSIX processes, with 
QEMU residing in the host userspace and 
utilizing KVM to take advantage of the 
hardware virtualization extensions [22]. 
Other VMM can be use on top of KVM, as 
Firecracker, Cloud Hypervisor and crosvm. 
Firecracker uses the KVM to create and 
manage microVMs. Firecracker has a 
minimalist design. It excludes unnecessary 
devices and guest functionality to 
reduce the memory footprint and attack 
surface area of each microVM [31]. 
Cloud Hypervisor focuses on exclusively 
running modern, cloud workloads, on top 
of a limited set of hardware architectures 
and platforms. Cloud workloads refers to 
those that are usually run by customers 
inside a cloud provider. Cloud Hypervisor 
is implemented in Rust and is based on 
the rust-vmm18 crates. The crosvm VMM 
is intended to run Linux guests, originally 
as a security boundary for running native 
applications on the Chrome OS platform. 
Compared to QEMU, crosvm does not 
emulate architectures or real hardware, 
instead concentrating on para-virtualized 
devices, such as the VirtIO [32] standard.

KVM (Kernel-based Virtual Machine) is a 
type-2 hypervisor that added virtualization 
capabilities to Linux. KVM is integrated 
in the Linux kernel, thus benefiting from 
reusing many Linux functionalities such 
as memory management and CPU 
scheduling. The downside of it is the huge 
TCB that comes along KVM. The KVM 
was originally built for x86 architecture 
and then ported to ARM [21]. The KVM 
on ARM implementation has been split 
in the so-called Highvisor and Lowvisor. 
The Highvisor lies in ARMs kernel space 
(EL1) and handles most of the hypervisor 
functionalities. The Lowvisor resides in 
hypervisor mode (EL2) and is responsible 
for enforcing isolation, handling hypervisor 
traps and performing the world switches 
(context execution switches between VMs 
and host) [22].

Xen is defined as a type-1 hypervisor. 
The x86 version of Xen, is a bare-metal 
hypervisor that supports both fully 
virtualized and para-virtualized guests. On 
ARM, the code for Xen is reduced to one 
type of guest which uses para-virtualized 
drivers and the ARM virtualization 
extensions [22]. The Xen hypervisor resides 
in hypervisor mode. On top of it, everything 
is executed as a guest placed in different 
domains. The most privileged domain is 
called Dom0, it has access to hardware and 

Bao is a lightweight bare-metal hypervisor 
designed for mixed-criticality systems. 
It strongly focuses on isolation for fault-
containment and real-time behavior. Its 
implementation comprises a thin layer 
of privileged software leveraging ISA 
virtualization support to implement a 
static partitioning hypervisor architecture 
[27]. ACRN targets itself to IoT and Egde 
systems, placing a lot of emphasis to 
performance, real-time capabilities and 
functional safety. ACRN currently only 
supports x86 architectures, and as it is 
mainly backed by Intel, support to other 
architectures may not appear any time 
soon [28]. 

Gunyah16 is a relatively new hypervisor 
by Qualcomm. It is a microkernel design 
with capability access controls. Gunyah 
being a new project has a very limited 
HW support, and practically non-existent 
community outside Qualcomm. KVMs17 
is an aarch64 specific hypervisor, building 
upon popular KVM, bringing a lot of 
flexibility for example in terms of choice 
of VMMs. Thanks to a small size, it is 
possible to formally verify hypervisor EL2 
functionality [29]. While there are a lot of 
benefits, it is limited to on CPU architecture, 
and maintaining KVMs patch series across 
several versions of Linux kernel may 
become an issue.

Apart from seL4, there are 
other open source hypervisors 
available in the market. KVM 
and Xen are examples of 
traditional hypervisors that 
have been in the market 
for more than 15 years and 
were deployed in different 
solutions [19] [20]. While 
both hypervisors are widely 
used, feature rich and well 
supported, the huge TCB 
makes them vulnerable.

13

14	https://wiki.xenproject.org/wiki/DomU
15	https://xenproject.org/2019/12/16/true-static-partitioning-with-xen-dom0-less/
16	https://github.com/quic/gunyah-hypervisor
17	https://github.com/jkrh/kvms
18	https://github.com/rust-vmm
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seL4 VMM

The CAmkES project is a framework for 
running virtualized Linux guests on seL4 
for ARM and x86 platforms. The camkes-
vm implements a virtual machine monitor 
(VMM) server, facilitating the initialization, 
booting and run-time management of a 
guest OS [34]. The CAmkES project provides 
an easy way to run different virtualization 
examples with one or more VMs and 
different applications. It also provides a 
way how to passthrough devices in such 
environments. One drawback of such a 
framework is that it is only possible to run 
static VMs, in which the VM configuration 
should be defined at design time.

CAmkES proved to be too complex, static 
and maintenance intensive. Because of 
this reason, many projects and companies 
have rolled their own user space. As the 
VMM is in the user space, the challenges 
and limitations are imminent in the 
virtualization too. To remedy the situation, 
the seL4 community is introducing seL4 
Core Platform [35] [36], or seL4cp, and 
seL4 Device Driver Framework19, or sDDF. 
The two new components are attempts to 
fix the shortcomings of CAmkES. This also 
means that the VMM parts will be changed 
significantly too.

The seL4 supports virtualization by 
providing specifically two libraries: 
(i) \textit{libsel4vm}, and (ii) 
libsel4vmmplatsupport [33]. The first (i) is a 
guest hardware virtualization library for x86 
(ia32) and ARM (ARMv7/w virtualization 
extensions \& ARMv8) architectures. The 
second (ii) is a library containing various 
VMM utilities and drivers that can be used 
to construct a guest VM on a supported 
platform. These libraries can be utilized to 
construct VMM servers through providing 
useful interfaces to create VM instances, 
manage guest physical address spaces 
and provide virtual device support (e.g., 
VirtIO Net, VirtIO PCI, VirtIO Console). 
Projects exist that make use of the seL4 
virtualization infrastructure, supporting the 
provision of virtualization environments. 
Examples of those kinds of projects are 
CAmkES and Core Platform.

The Core Platform provides the following 
abstractions: protection domain (PD), 
communication channel (CC), memory 
region (MR), and notification and protected 
procedure call (PPC). A VM is a special 
case of a PD with extra, virtualization-
related attributes. The original version of 
the seL4CP was fully static, in that all code 
had to be fixed at system build time, and 
PDs could not be restarted. The addition 
of dynamic features is in progress [37]. 
The seL4 Device Driver Framework (sDDF) 
provides libraries, interfaces and protocols 
for writing/porting device drivers to run as 
performant user level programs on seL4. 
The sDDF also aims to be extended to a 
device virtualization framework (sDVF) for 
sharing devices between virtual machines 
and native components on seL4.

Even though the seL4 VMM exists and 
is available to use, it lacks in providing 
essential features for virtualization 
support in complex scenarios. Moreover, 
its fragmentation by different closed-
source deployments makes the mainline 
depreciate fast. Thus, it is necessary to 
discuss the desired features for such a 
standard VMM. 

An Operating System (OS) 
microkernel is a minimal core 
of an OS, reducing the code 
executing at higher privilege 
to a minimum. The seL4 is a 
microkernel and hypervisor 
capable of providing 
virtualization support [1]. It 
has a small trusted computing 
base (TCB), making a minor 
surface attack compared to 
traditional hypervisors such as 
KVM and Xen.

15

19	https://sel4.atlassian.net/browse/RFC-12
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Philosophy  
of a Standard VMM

For this discussion, driving philosophical 
concepts can be roughly binned into Design 
Principles and Feature Support Tenets. 
The Design Principles and Feature Support 
Tenets were defined based on features 
present in already available VMMs and the 
technical challenges they posed. A deeper 
discussion about the Design Principles and 
Feature Support Tenets will be needed 
before implementation at seL4 mainline. 
This list intends to serve as a starting point 
for discussing such topics.

but cannot lock an adopter 
into specific implementations. 
Each adopting integrator 
will inevitably start from the 
new standard and refine the 
implementation for their use 
case. One size does not fit all, 
so customization will always 
occur. The effort here is to 
close the gap between the 
current VMM baseline and the 
point of necessary deviation. 
Refinement should only be 
necessary to cover specific 
requirements and edge cases 
highly unlikely to appear in 
multiple projects across the 
integrator community. 

It should be immediately 
obvious that even a community 
as small as the commercial 
users of seL4 will have 
difficulty agreeing to an all-
encompassing standard. 
Thus, what is proposed is to 
establish a driving philosophy 
for the design of a baseline 
VMM rather than prescribe a 
specific system architecture. 
There is the need to discuss 
the possible missing features 
of the existing seL4 VMM [33] 
concerning a standard VMM, 
more so than a prescription for 
the right way to do it. Indeed, 
this will entail recommending 
high-level architecture patterns 

17
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Design Principles

Modular: Maintainable and Upgradable 

It is expected that the standardized VMM 
would be deployed in heterogeneous 
environments and scenarios under quite 
varied use cases. This will require flexibility 
in aspects such as system architecture, 
hardware requirements, performance, etc. 
It is essential to follow a modular design 
approach to guarantee the applicability of 
the VMM in any of those variants. 

In implementing the VMM modularly, it 
is essential to achieve its readability by 
following the C4 (Context, Containers, 
Components, and Code) model, for 
instance. The C4 model is an "abstraction-
first" approach to diagramming software 
architecture [39]. It decomposes the 
system so community members can pick 
and choose components for their project. 
The Context shows how the software 
system in scope fits into the environment 
around it. Containers inside a Context 
define the high-level technical building 
blocks. A Component is a zoom-in to 
an individual Container and shows its 
responsibilities and implementation details. 
Finally, Code is a specific description of how 
a Container is implemented. The modular 
approach makes it possible for integrators 
to define the Context, Containers, 
Components, and Code that must be 
pieced together for a VMM to support 
specific features, making their VMM highly 
customized to their end goal.

Additionally, it is essential to consider and 
accommodate the rather large differences 
architecture-wise, even with the same ISA 
implementation. For example, Codasip20  
and SiFive21 implementations of RISC-V 
have non-ignorable differences, while 
ARM implementations from Qualcomm, 
Samsung, and NXP exhibit wildly different 
behavior [41]. Though SoC vendors may be 
compliant with the ISA specification, there 
usually is some collection of deviations or 
enhancements present, often implemented 
as a black-box binary. Areas of concern 
include control of the system’s Memory 
Management Units, Generic Interrupt 
Controller, TPM/TEE, secure boot process, 
and access to the appropriate privilege 
level for the seL4 kernel (e.g., EL2 for 
Qualcomm-ARM).

Official and Open Source

The existing seL4 VMM [33] employs 
an open-source license, and any new 
implementations under the proposed 
standard should remain in accordance 
with this approach. This applies to all 
the code up to the point of necessary 
differentiation. Individual integrators 
should always retain the ability to keep 
closed-sourced their highly specialized or 
trade secret modifications. This strikes a 
balance between business needs such as 
maintaining a competitive edge and fully 
participating in a collaborative community 
around a common baseline. Open sourcing 
the standard VMM is essential for the seL4 
community to engage collaboratively and 
improve the VMM by either contributing 
to the source code repository or using and 
learning from it.

It is recommended to place the standard 
VMM baseline under the purview of 
the seL4 Foundation to benefit from 
the structure and governance of that 
organization. The desire is that it will gain 
in stature as well, as the current VMM is 
a second-class citizen in the community. 
Alongside the source code, the Foundation 
should periodically publish reports about 
major updates and possible new directions 
as new technologies mature. In this way, it 
will help to maintain a long-term roadmap 
to incorporate new features such as ARMv9 
Realms [38], for instance.

Portable: Hardware Independence

The seL4 community has done a 
phenomenal job in supporting seL4 across 
a variety of hardware platforms [40]. The 
VMM should be generic enough to support 
them as well. This may be a lofty goal.

One good starting point may be to design 
and write the VMM to support popular 
hardware such as ARM, x86, and RISC-V 
Instruction Set Architecture. This will ensure 
the standard VMM is not explicitly linked to 
a specific set of hardware characteristics. 
Of course, different ISAs may impose 
architectural differences. However, there is 
the need for a minimal and modular VMM 
that could be easily moved from 4 core 
ARM SoC (big.LITTLE) to a 48-core Thread 
Ripper AMD x86, as an example. 

The standard VMM could be seen 
as a baseline for different hardware 
implementations. Obviously, the baseline 
will not take advantage of all the platforms' 
hardware features. However, it can be used 
for Proof-of-Concept implementation and 
learning purposes for being easy to deploy 
on different platforms.

Five major design principles 
are recommended as potential 
directions towards the 
standard VMM. They are 
motivated to be open, modular, 
portable, scalable, and secure.

19
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Secure by Design

A security by design approach requires 
enforcing as much isolation as possible at 
every level of implementation. A standard 
seL4 VMM implementation should support 
one VMM instance per VM. Even though 
this approach is well followed by most of 
the integrators and supported by seL4, it 
is important to highlight its benefits. This 
approach improves both scalability and 
security of the solution. 

If a guest OS is compromised, it opens an 
attack vector toward the VMM. However, the 
risk is limited if there is a dedicated VMM 
per VM. The other VMs, their VMMs, and 
guest OSes are completely isolated by the 
stage 2 translation. This assumes a formally 
verified kernel and that the translation 
tables or the memory areas the tables point 
to are distinct for each VM. 

Though this approach is already 
common today, some integrators do not 
always implement it for time-to-market 
pressure, reusable code, or other unusual 
circumstances. Support for this design 
should be standardized so that the enabling 
code can be considered boilerplate 
and easily consumed. Figure 2 shows a 
representation of a secured by design 
architecture, with one VMM per VM. Even 
though the VMM has more direct interaction 
with the hypervisor, it is placed in the User 
Mode. The VMs are present at both User and 
Kernel modes, as they can have applications 
and drivers, respectively.

Scalable: Application-agnostic

A standard VMM should be scalable in 
the sense that it needs to be able to 
support several applications running on 
top for different specific purposes. Different 
applications may have a distinct set of 
requirements such as performance, safety, 
security, or real-time. The VMM should 
be able to meet those requirements and 
provide a way for the applications to 
reach them. Moreover, the VMM should 
guarantee that the applications will run as 
expected, being able to initiate and finish 
the tasks successfully. A VMM scheduler 
should be responsible for balancing the 
loads and ensuring that no application (i.e., 
thread) is left unattended.

The scalability of the systems is also tied 
to their performance. In light of this, it 
is essential that the VMM supports from 
one to an arbitrary number of processing 
units or cores. The existing seL4 VMM 
does not support multiprocessing and 
consequently highly restricts the number of 
applications that can be run atop. Enabling 
multiprocessing would help achieve better 
performance, thus improving the scalability 
of the system performance as a whole. We 
discuss in detail the possibilities to enable 
multicore VMM further in this paper in the 
Multicore & Time Isolation section.
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Figure 2  Example of an architecture with one VMM per VM
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Feature Set Support Tenets 

personality for the seL4 microkernel. 
The Core Platform makes seL4-based 
systems easy to develop and deploy 
within the target areas. It can be used 
to bring up VMs on top of seL4. Core 
Platform promises to deliver dynamic 
features to the seL4 environment 
[35]. However, it is still in progress 
with ongoing virtualization features 
in development22. The Trustworthy 
Systems - UNSW23  group also intends to 
formally verify two core aspects of the 
seL4 Core Platform24: (i) correctness of 
the implementation, i.e. its abstractions 
function as specified, and (ii) correctness 
of the system initialization, i.e. the 
collection of underlying seL4 objects 
are fairly represented by the system 
specification.

A new VMM standard should enhance 
the existing static build approach 
with a build-time specification stating 
that dynamic configurations are also 
permitted. They could be limited by 
providing build-time parameters for 
acceptable configurations. To achieve 
a dynamic environment, it should be 
possible to use the seL4 mechanisms 
for transferring/revoking capabilities to 
the entities during runtime, providing a 
potential implementation mechanism 
for this feature. It may also be an option 
to build a core common component to 
serve as an “admin VM” for dynamic 
configurations, even subjecting it 
to some degree of formal methods 
verification. This is anticipated to be an 
area of much research and prototyping 
to achieve the desired balance of 
security and flexibility.

System Configuration

Currently, there are two main 
approaches to facilitate the system 
configuration when running virtual 
environments on top of seL4. The first 
to be introduced was CAmkES, that 
stands for Component Architecture 
for microkernel-based Embedded 
Systems [42]. The second one is seL4 
Core Platform (seL4CP) [35]. The Core 
Platform, which was recently introduced, 
intends to be the standard for such 
virtual environments on top of seL4. 
Thus, the CAmkES is being deprecated.

CAmkES is a software development 
and runtime framework for quickly and 
reliably building microkernel-based 
multiserver (operating) systems [42]. 
Currently, using the CAmkES framework 
with the VMM will result in a fully 
static configuration. The VMs must be 
defined and configured during the build. 
This also includes defining the RAM 
area. It is designed to achieve security 
guarantees so as not to allow post-build 
modifications to the number of running 
VMs and their interconnections. This 
is a highly desirable aspect when the 
use case calls for it. However, it can 
be inflexible and even short-sighted 
when the nature of the user experience 
requires dynamic configuration, i.e. no 
dynamic start/stop/restart capability.

It is often necessary to have a more 
dynamic seL4-based environment for 
the purpose of allowing better usability, 
modularity, or even scalability. The Core 
Platform is an operating system (OS) 

Multicore & Time Isolation

One of the key aspects of virtualization 
is the need for efficiency, where 
multiprocessing configurations play 
an important role. Although multicore 
support is a complex engineering task, 
it should be supported in its simplest 
shape to avoid contention and potential 
deadlocks. Different physical CPUs 
(pCPUs) can be enabled by the kernel 
(in a Symmetric Multiprocessing - SMP 
configuration) in order to allocate them 
to a different system running threads 
according to the use-case application 
requirements. Next, we present 
potential multi-core configurations 
that a standard VMM should be able to 
support using a clear multiprocessing 
protocol:

Four major features are 
recommended as potential 
directions towards the 
standard VMM to support 
hardware mechanisms 
and provide security and 
performance benefits.

23

22	https://github.com/Ivan-Velickovic/sel4cp/tree/virtualisation\_support
23	https://trustworthy.systems/about/
24	https://trustworthy.systems/projects/TS/sel4cp/verification
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Direct Mapping Configuration:  
Multiple single-core VMs running concurrently and physically distributed over dedicated CPUs. 
Figure 3 shows the representation of the Direct Mapping Configuration approach.

Hybrid Multiprocessing Configuration:  
It can have multiple single-core VMs running in dedicated CPUs as the Direct Mapping 
Configuration, however, it can also have multicore VMs running in different CPUs. Figure 4 shows 
the representation of the Hybrid Multiprocessing Configuration approach.

Figure 4 Hybrid Multiprocessing Configuration overviewFigure 3 Direct Mapping Configuration overview
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pIRQ/vIRQs ownership: physical 
interrupts (pIRQs) shall be virtualized 
(vIRQs) and require a multiprocessing 
protocol with simple acquire/release 
ownership of interrupts per pCPU/vCPU 
targets. Besides, support hardware-
assisted interrupt-controllers with 
multicore support is required.

Inter-vCPU/inter-pCPU communication: 
Another key aspect of multiprocessing 
architectures is the ability to 
communicate between pCPUs. Also, 
with equal importance, communication 
between vCPUs results in not only 
inter-pCPU but also inter-vCPU 
communication. Communication is very 
important in multiprocessing protocols, 
but it should be designed in a way that is 
simple to verify and validate.

Other features that are likely required 
by multicore design are:

vCPUs Scheduling: The ability to 
schedule threads on each pCPU based 
on their priority, credit-based time 
slicing, or budgeting depending on the 
algorithm selected. As an example, 
It could be a design configuration 
whether it supports vCPU migration 
(a vCPU switching from pCPU id:0 to 
id:1) with also the possibility to tie up 
a set of the vCPUs to pCPUs. Another 
potential configuration is the static 
partitioning one, where all the vCPUs 
are assigned to pCPUs at design-time 
and are immutable at run-time. In 
addition, having dynamic and static 
VMs configuration in a hybrid mode 
could be something to support. A 
multiprocessing protocol with acquire/
release ownership of vCPUs should 
be supported. The seL4 kernel has a 
scheduler that chooses the next thread 
to run on a specific processing core, 
and is a priority-based round-robin 
scheduler. The scheduler picks threads 
that are runnable: that is, resumed, 
and not blocked on any IPC operation. 
The scheduler picks the highest-priority, 
runnable thread (0~255). When multiple 
TCBs are runnable and have the same 
priority, they are scheduled in a first-in, 
first-out round-robin fashion. The seL4 
kernel scheduler could be extended for 
the VMMs.

The two depicted configurations are 
examples for future reference of a 
standard VMM, but it is not strictly 
limited. Most, if not all, current and 
near-future use cases are covered by a 
model where there are multicore VMMs 
that are pinned to exclusive cores and 
unicore VMMs that can be multiplexed 
on a core. Ideally, it would be up to 
the system designer to decide which 
configuration to use. It could be either 
static or dynamic, enabling switching 
from a given configuration to another in 
run-time. The selected configuration will 
affect several threads in execution. 

In the seL4 context, threads can be 
running either Native apps, OSes, and/
or VMMs. The former is typically used 
to run device drivers or support libraries. 
OSes are using threads running over 
virtual abstractions, or VMs, while VMMs 
are creating and multiplexing these 
abstractions to be able to encapsulate 
OSes. They all require an abstraction 
representing the pCPU time but differ 
from the supported execution level 
and their scope over other system 
components. For example, a VMM can 
access the VM internals but not the 
opposite. 

small memory segments shared with 
other VMs, (ii) hiding physical platform 
memory segments or devices from the 
VMs, (iii) no need to recompile a non-
relocatable VM image.

Device memory isolation by hardware-
support or purely software: Devices 
that are connected to the System-on-
Chip (SoC) bus interconnection and 
are masters can trigger read and write 
DMA transactions from and to the 
main memory. This memory, typically 
DRAM, is physically shared and logically 
partitioned among different VMs by 
the hypervisor. Some requirements 
could be met in a standard VMM: (i) 
a device can only access the memory 
of the VM it belongs to; (ii) the device 
could understand the virtual AS of its 
VM; and (iii) the virtualization layer 
could intercept all accesses to the device 
and decode only those that intend to 
configure its DMA engine in order to do 
the corresponding translation if needed, 
and control access to specific physical 
memory regions. In order to meet these 
three requirements a standard VMM 
requires support for either an IOMMU 
(with one or two stage translation 
regimes) or software mechanisms for 
mediation.

Cache isolation through page-
coloring: Micro-architectural hardware 
features like pipelines, branch 
predictors, and caches are typically 
available and essential for well 
performant CPUs. These hardware 
enhancements are mostly seen as 
software-transparent but currently 
leaving traces behind and opening up 
backdoors that can be exploited by 
attackers to break memory isolation 
and consequently compromising the 

Memory Isolation

All virtual services need to access 
memory to do their work. The memory 
needs to be a shared resource used 
to run code and services. We need to 
strike the appropriate balance between 
ensuring that memory is a shared 
resource and is securely accessed by 
competing engines and services. 

Memory isolation is critical to enforce 
the security properties such as VMs 
confidentiality and integrity. Hardware-
enforced and partial microkernel 
access-controlled memory translation 
and protection between VMs/VMMs 
and Native Apps are key security 
requirements for security-critical use-
cases. Support for hardware-assisted 
virtualization (extended Page Tables 
or second-stage) MMU should be an 
integral part of the standard VMM. 

Next, are some features for future 
reference that can leverage such 
hardware for memory isolation: (i) 
configurable VM Virtual Address Space 
(VAS); (ii) device memory isolation; and 
(iii) cache isolation.

Configurable VM Virtual Address 
Space: Multiple virtual Address Spaces 
are an important feature supported by 
high-end processors and have the same 
paramount importance for hardware-
assisted virtualization. There should 
be different Virtual Address Spaces for 
different software entities: Hypervisor, 
VMM, and their respective VMs. User-
controlled and configurable address 
spaces are important features for VMs. 
For example, (i) setting up a contiguous 
virtual address space ranges from 
fragmented physical memory as well as 

memory confidentiality of a given 
VM. One mitigation for this problem 
is to apply page coloring in software 
and could be an optional feature 
supported by a standard VMM.  Page 
coloring is meant to map frame pages 
to different VMs without colliding 
into the same allocated cache line. A 
given cache allocated by a VM cannot 
evict a previously allocated cache line 
by another VM. This technique, by 
partitioning the cache in different colors, 
can protect to some extent (shared 
caches) against timing cache-based side 
channel attacks, however, it strongly 
depends on some architectural/platform 
parameter limitations such as cache 
size, number of ways and page size 
granularity used to configure the virtual 
address space. L1 cache is typically 
small and private to the pCPU while L2 
cache is typically bigger and seen as the 
last level of cache that is shared among 
several pCPUs. It would be possible to 
assign a color to a set of VMs based 
on their criticality level. For example, 
assuming the hardware limits the 
system to encode up to 4 colors, where 
one color can be shared by a set of 
non-critical VMs, other for real-time VM 
for deterministic behavior, and the other 
two for a security- and performance-
critical VM that requires increased cache 
utilization and at the same isolation 
against side-channel attacks.

27



Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute28

The OASIS collaboration community 
manages the set of VirtIO standards 
[32] that are implemented to various 
degrees by Linux and Android. Given the 
excellent support, it is recommended 
to adopt VirtIO implementations for 
multiple interfaces in the standard 
VMM. Support for standardized VirtIO 
server implementations in the VMM 
would be a meaningful complement to 
guest OS clients. For instance, the VirtIO-
Net server in the VMM could store a 
table of MAC addresses, creating a 
virtual switch. In the case of the VirtIO-
Block server, the VMM could terminate 
VirtIO-Block requests so that address 
mappings are not known by the user-
facing guest OS, then start up another 
request to the VM containing the device 
driver to perform the actual write. For 
instance, in complex architectures with 
more than one guest OS accessible from 
the user perspective, VMM VirtIO servers 
could also handle multiplexing access to 
various devices between VMs, creating a 
“multi-persona” capability.

Among the possibilities of implementing 
VirtIO interfaces, the following items 
present examples of how it can be used 
and integrated with a standard VMM:

VirtIO can be used for interfacing VMs with host device drivers. It can support VirtIO driver 
backends and frontends on top of seL4. VirtIO interfaces can be connected to open-source 
technologies such as QEMU, crosvm, and Firecracker, among others. In this scenario, the open-
source technologies will execute in the user space of a VM different from the one using the device 
itself. This approach helps in achieving reusability, portability, and scalability. Figure 5 shows 
the representation of such an approach considering a VirtIO Net scenario in which a Guest VM 
consumes the services provided by a back-end Host VM.

Hypervisor-agnostic I/O Virtualization 
and its derivations

Many security use-cases require 
virtualization environments with 
reduced privilege such that only specific 
VMs, called driver VMs, can directly 
access hardware resources while 
the others, called User VMs, run in a 
driverless mode since device drivers are 
seen today as a major source of bugs. A 
compromise caused by exploitation of 
a driver bug can be contained in its own 
VM. Typically, in such environments, any 
VM that will potentially run unknown 
code and/or untrusted applications may 
require isolation from key device drivers 
sequestered into their dedicated VMs. 
Inter-VM communication, including 
access to the devices, must be done by 
proxy over well-known and managed 
interfaces. This approach requires a 
combination of VM kernel modifications 
and VMM modules to be able to 
communicate and share basic hardware 
devices over virtual interfaces. 
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Figure 5  VirtIO drivers example on top of seL4 hypervisor25	https://trustworthy.systems/projects/TS/drivers/
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Figure 6  VirtIO interfaces considering a formally verified Device Driver
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VirtIO interfaces can be connected to formal verified native device drivers. The use of such 
kinds of device drivers increases the security of the whole system. Moreover, the verified device 
drivers can be multiplexed to different accesses, switching device access between multiple clients. 
The multiplexer is transparent to native clients, as it uses the same protocol as the (native) 
clients use to access an exclusively owned device. Figure 6 shows the representation of a device 
virtualization through a multiplexer. In this example each device has a single driver, encapsulated 
either in a native component or a virtual machine, and is multiplexed securely between clients.25

VirtIO also includes standards for Touch, 
Audio, GPU, and a generic VirtIO-
Socket interface which can be used to 
pass data of any form. Standardized 
implementations for these are not 
mature or widely available outside of 
the automotive use case. OpenSynergy 
actively worked with Google and 
Qualcomm to include these interfaces 
in Android Auto [43]. It may be possible 
for the seL4 community to expand those 
implementations to other areas through 
customer-funded projects.
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Discussion Topics 

VMM API

With the seL4 VMM API, it is possible 
to follow the one VM per VMM "rule" as 
it is a safer approach from a trust point 
of view. We could have different flavors 
of VMMs, such as QEMU, crosvm, and 
cloud-hypervisor, as each one of them 
will have its strengths and weakness 
[44] [45]. 

An API would make it possible for 
some elements of the VMM not to be 
wrapped in a runtime context, like it 
is now, because it then already makes 
an assumption about the architecture. 
That assumption might not be what 
most integrators (i.e., companies) are 
after. Let's take KVM as an example. 
If KVM would provide more than basic 
constructs and include runtime context 
(essentially VMM), then we would not 
be able to have different VMMs (QEMU, 
crosvm, cloud-hypervisor). It does not 
mean that there is not an API already 
in the seL4 environment. But it is pretty 
fragmented and not uniform as one 
might expect.

The integrators could have an option 
to use the seL4 VMM (i.e., with 
characteristics similar to the ones 
presented in this article) and also 
the VMM API to have a more diverse 
virtualization environment. There is a 
certain minimal subset that a VMM 
must handle, like handling the hardware 
virtualization of Generic Interrupt 
Controller Architecture (GIC) and 
handling faults. However, it should also 
be possible to define where VirtIO-
console should be handled or that 
VirtIO-blk device must be handled by 
QEMU in some VM. If someone has a 
native VirtIO-backend for some of those 
examples, it should be possible to use it.

Apart from the previously 
mentioned topics, a seL4 
standard VMM could also be 
a programmable API rather 
than something configured 
with static Domain Specific 
Language (DSL) during 
compilation (e.g., CAmkES). 
The API makes it possible to 
wrap the functionality to any 
compile-time DSLs, custom 
native services and enables 
run-time dynamism. The API 
could have a compile-time 
configuration for enabling/
disabling dynamic features. 
It should build upon layers 
so one can use the low-level 
APIs with all seL4-specific 
complexity involved, but the 
API should keep the seL4-
specific things minimal at a 
high level.

3333

Formal Methods

Parts of the standard VMM could be 
subject to verification, an example 
could be the device drivers. The Device 
Virtualization on seL4 project26  has the 
long-term goal of formal verify device 
drivers, which is enabled by the strong 
isolation provided for usermode drivers 
on seL4, which allows verifying drivers 
in isolation. The seL4 Core Platform 
has a working in progress project27 to 
formally verify two core aspects of it: 
(i) correctness of the implementation 
(i.e. its abstractions function as 
specified), and (ii) correctness of the 
system initialization (i.e. the collection 
of underlying seL4 objects are fairly 
represented by the system specification).

Currently, the VMM is assigned per each 
VM, and thus it is in the VM’s Trusted 
Computing Base. If we consider the 
scenario in which it is possible to use a 
VMM API to run VMMs from different 
flavors, the formal verification would 
rely just on the minimal part responsible 
to execute those VMMs and not in the 
VMM itself. The VMM is considered part 
of a guest for the purposes of formal 
methods, so maintaining the proofs 
would be challenging. However, there 
may be a specific case to be made 
for the standard VMM to be shared 
across all VMs in a particular system. 
In that instance, the VMM could be 
subject to formal methods verification. 
However, it would be a complex and 
costly undertaking and goes against the 
“One VMM Per VM” principle detailed 
previously in this document. 

No discussion of an seL4 
adjacent system is complete 
without consideration for the 
impact of formal methods. 
Since this discussion is 
driven by the need for a 
VMM which can handle 
complex, real-world use 
cases, an integrator would 
likely be using a hardware 
platform for which seL4 
does not yet support formal 
methods, such as aarch64 or 
a multicore configuration. In 
this case, the effect of formal 
verification is a moot point. 
However, in the future, or for 
a simpler configuration, we 
can still assess the impact.

26	https://trustworthy.systems/projects/TS/drivers/devvirt
27	https://trustworthy.systems/projects/TS/sel4cp/verification
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There has been incredible interest and 
innovation in edge computing. But 
the edge is more complex and more 
pervasive by the day. At the same time, 
edge computing devices are becoming 
a larger target because of their growing 
prevalence and potential damage. 

We believe that securing edge 
computing needs to evolve to the next 
level. Leveraging a provably secure 
kernel like seL4 as a baseline will help us 
improve system security as a whole.

In addition, we should also adapt 
important features already deployed 
in other types of systems today. We 
need to make it easy to reuse system 
configurations across hardware. It is also 
essential to ensure support for multicore 
systems and time isolation. Memory 
isolation can allow us to share resources 
securely across processes. 

Ultimately, this standard must be put 
to the test by making a concerted 
effort to build a real-world proof of 
concept around it. This will almost 
certainly require significant funding 
– either of an R&D nature or from an 
end customer. Considering the seL4 
ecosystem, the first step towards the 
definition of a standardized VMM 
would be the creation of an RFC for 
community discussion and approval. 
It will be up to one or more members 
of the seL4 community to look for 
opportunities to take up this mantle and 
be a champion for this initiative. Also, 
such kind of standard VMM will only be 
successful when discussed within the 
seL4 community. Thus, the spread of 
such idea through the seL4 community 
communication channels is essential. 
Moreover, the creation of work groups 
within the seL4 Community, around 
topics of interest, may be the best 
approach to leverage such standard 
VMM.

The Technology Innovation 
Institute (TII) can draw 
from its experience building 
hypervisor-based systems 
of significant complexity to 
conclude that the existing 
VMM baseline is not ideal. 
It lacks support for many 
practical design features. We 
can remedy these defects by 
collaborating to build a new 
VMM standard. We should 
consider important principles 
to guide these efforts to 
ensure the result is open, 
modular, portable, scalable, 
and secure by design. 

Next Steps
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