
tii.ae

Secure Systems
Research Center

Why collaboration on a robust
Virtual Machine Monitor (VMM)
will deliver on the promise of seL4

2

Innovation
for a better
world

03

04	 Abstract
06	 Why a standardized

seL4 VMM?
08	 Why seL4?

10	 Virtualization
and seL4 VMM

10	 Virtualization
12	 Related hypervisors

and VMMs
14	 seL4 VMM

16	 Philosophy
of a Standard VMM

18	 Design Principles	
18	 Official and Open Source
18	 Modular: Maintainable

and Upgradable
19	 Portable: Hardware

Independence
20	 Scalable: Application-

agnostic
20	 Secure by Design
22	 Feature Set Support Tenets
22	 System Configuration
23	 Multicore & Time Isolation
27	 Memory Isolation
28	 Hypervisor-agnostic

I/O Virtualization
and its derivations

30	 Discussion Topics
30	 VMM API
32	 Formal Methods

34	 Next Steps
36	 Bibliography

Contents

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute04

Abstract

As a result of these tooling and framework gaps in Edge computing virtualization, researchers have
turned to other open-source initiatives to improve the security of mainstream hypervisors, like KVM1
and Xen2, through Protected KVM and Dom0-less Xen. But these approaches tend to sacrifice either
the performance or the feature set of the underlying hypervisor.

Microkernel-based designs like seL4 promise to address security from conception to
implementation. seL4 can also be implemented as a base hypervisor with sufficient native and
virtual machine applications to support the large number of use cases in Edge computing devices.
To achieve the rich support for broad virtual machine environments, a robust virtual machine
monitor (VMM) will be required to tune seL4 for these use cases.

We argue that a community-wide effort is needed to build out the standardized VMM infrastructure
required to customize seL4 for various use cases. Here we elaborate on some of the design
principles and the potential feature set we need to collaborate on to support new high-assurance
use cases cost-effectively.

Security and resiliency are often approached as an afterthought in
system design. Developers write code to run on various operating
systems and then try to harden all the different vulnerabilities and
data leaks that may occur after the fact. This approach is costly and
spends considerable resources trying to fix problems after the fact.

Virtualization can play an essential role in providing security to computational systems by isolating
execution environments. Virtualization solutions through different Hypervisors have extensively
been deployed in Cloud and High-Performance Computing as a way to share the compute
resources in these complex environments. However, only a few hypervisors were designed to be
deployed at the edge of the network, in devices with fewer computation resources when compared
with servers in the Cloud. Among the few lightweight software that can play the hypervisor role,
seL4 microkernel stands out by providing a small Trusted Computing Base and formally verified
components, enhancing its security.

Researchers have been exploring ways to start with more secure microkernels like L4 and later seL4.
Over the last few years, the main development efforts have been put into increasing the maturity
of the seL4 kernel itself and not the tools and frameworks that can be hosted on top of it. As such,
seL4 lacks the proper support required for many Edge computing virtualization use cases. Thus, a
security engineering cost is incurred in adapting seL4 to secure these use cases.

05

1	 https://www.linux-kvm.org/page/Main_Page
2	 https://xenproject.org/

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute06

Why a standardized seL4 VMM?

A standard Virtual Machine Monitor
could help address could help satisfy the
business goals of seL4 ecosystem members
in a standard way. This effort would
benefit from the input and authorship
of seL4 integrators [3], which are active
commercially focused teams in the seL4
ecosystem, including but not limited to Cog
Systems3, Technology Innovation Institute
(TII)4, Hensoldt Cyber5, DornerWorks6,
and NIO7. Each of those businesses has
different goals, but there is still a common
baseline and philosophy binding them
around the VMM when using seL4 as a
hypervisor.

At a high level, there are gaps in the seL4
stack, specifically the VMM, userspace,
and tooling, which complicate matters
for integrators attempting to meet
real-world customer use cases. Not all
business opportunities require a solution
using a VM architecture, but those that
do quickly become complex and would
benefit enormously from an established
standard or reference baseline. The lack of
a robust and consistent VMM for seL4 has
created a highly fractured environment.
Most integrators have their own specialized
customer use cases, and they have found
that the quickest path is to use a forked
and modified VMM.

This practice may have short-term benefits
to that integrator. Still, it does not allow the
community to benefit from commonality
and guarantees that the fork will quickly
get old and out of sync with the mainline.
For instance, there will be VMM fork
features that overlap, and which should
be implemented in a standard way for the
sake of ongoing community benefit and
maintenance.

To enroll the community
in building a standard
VMM as a shared effort by
highlighting the discussion
about the challenges and
potential directions of a
standard VMM.

To present the potential
key design principles and
feature set support toward
seL4 VMM standardization.
The items shown in this
article can be the basis for an
extended version with a more
comprehensive list of required
properties and features.

So, researchers developed L4 for more
specialized applications with a need for
high assurance and efficiency. It works well
in tightly controlled environments where
there is no need for lots of services. For
example, Qualcomm uses a custom version
of L4 in their modem and DSP solutions.

In 2006, researchers at the NICTA
leveraged recent advances in the L4
microkernel to design a new secure
microkernel called seL4 that is provably
secure. In 2014 NICTA and General
Dynamics open-sourced the kernel in the
hopes it would drive innovation in secure
systems.

seL4 is a small and simple microkernel-
based type-1 hypervisor. It follows the
principle of least privilege with capability-
based access control mechanisms,
performant inter-process communication
channels, and userspace services [1]. seL4
works in two different modes, although
sharing the same concepts, either as an
Operating System (OS) or as a Hypervisor,
depending on a set of design-time
configurations. The microkernel standalone
requires userspace services and VMMs that
run along with guest OSes.

Using seL4 in complex production
environments[2] brings new challenges,
which are often quite different from
research-oriented environments. There is a
problem of fragmentation since different
companies are using their own closed-
source tools and userspace libraries.

As a community, a VMM standard can be created which is consistent, maintainable, and works
for all the varied business focuses. Critically, this effort must get the conceptual buy-in of the seL4
Foundation and the larger seL4 community for it to be successful going forward. Additionally, a
reference implementation, properly maintained, would help to solidify and promote the concept
and to provide consistency to complex projects using seL4.

In light of this, the present article has the following goals:

The most popular kernels
were conceived for feature-
rich environments like laptops
and servers. But supporting
all these features consumes
considerable overhead and is
not suitable for constrained
devices in embedded systems.
This is important for use
cases such as building secure
mobile phones, drones, edge
devices, and modems. Existing
kernels like KVM are monolithic
systems with a large Trusted
Computing Base (TCB),
making it less secure and less
efficient to run on constrained
devices. Monolithic systems
are also not modular which
increases the development
and maintenance costs of
their solutions on embedded
devices.

07

3	 https://cog.systems/
4	 https://www.tii.ae/secure-systems
5	 https://hensoldt-cyber.com/
6	 https://dornerworks.com/
7	 https://www.nio.com/

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute08

Why seL4?

seL4 is used and being developed by
a growing number of companies and
hobbyists, with only a few hypervisors,
such as KVM and Xen, outperforming seL4
in this regard. Most of the Open-Source
Hypervisors (OSS) have a small, engaged
community, and/or the development
solely depends on the interest of a single
individual or company. Community is one of
the most important aspects for a successful
open-source operating system, and
hypervisor. Moreover, there are hypervisors
being developed by a single company. In
this case, the development takes place in
private repositories, and only the selected
features are published as snapshots to
public repositories. The dominance of
a single company makes these projects
unattractive for other companies. This,
for example, hinders the development of
architecture as well as hardware support
in general. In seL4 environment, the seL4
foundation8[6] ensures neutrality, and all
seL4 development takes place on public
repositories.

Many of today’s hypervisors have as their
main strength other aspects than security.
This impacts their architecture (e.g.,
monolithic) and design decisions. In this
regard seL4 with it’s fine-grained access
model and strong isolation guarantees
outperform others in terms of security. The
formal verification further adds proof and
credibility and makes it even more unique.
Thus, seL4 has a solid security model and
story, backed by formal verification.

seL4 is a general-purpose microkernel with
proven real-time capabilities that provides
system architectural flexibility.
The security and safety critical components
can be run natively in the user space of
seL4 hypervisor. This also applies to the
components with real-time requirements.
With the advent of the seL4 Mixed
Criticality System (MCS) kernel, seL4’s
strong spatial and temporal isolation
guarantees that the system components -
and untrusted VMs - are unable to interfere
with each other.

seL4 is a member of the L4
family of microkernels that
goes back to the mid-1990s
[1][4]. It uses the concept and
mechanism of capabilities,
which allows fine-grained
access controls and provides
strong isolation guarantees.
The Trusted Computing Base,
or TCB, with seL4 is small
9-18 kSLOC, depending on
CPU architecture, and it was
the first general purpose OS
to be formally verified. seL4
also features very fast IPC
performance - something
that is very important for
microkernels. According to
seL4 FAQ [5], it is the fastest
microkernel in a cross-address-
space message-passing (IPC)
operation.

09

8	 https://sel4.systems/Foundation/home.pml

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute10

Virtualization and seL4 VMM

Virtualization

The Virtual Machine Monitor (VMM)
is a piece of software that interacts
with the hypervisor in the virtualization
environment. It has its own responsibilities
apart from the hypervisor. The VMM
is a user space program that provides
emulation for virtual devices and control
mechanisms to manage VM Guests (virtual
machines) [15]. The VMM enables the
virtualization layer to create, manage,
and govern operating systems [16]. By
running at the user space, the VMM
runs at privilege level EL0 on ARM and
U-mode on RISC-V. Examples of VMMs are
Firecracker11, crosvm12, QEMU13. Depending
on the hypervisor and on the characteristics
of the deployed environment, it is possible
to have one or multiple VMMs. A common
approach is to have one VMM per each
operating system Virtual Machine.

Each operating system sits inside a Virtual
Machine (VM). A VM behaves like an actual
operating system from the point of view of
the user, being possible to run applications
and interact with it [17]. From the point of
view of the hypervisor, a VM has access to a
specific set of hardware resources managed
by the hypervisor. It is the VMM that makes
the bridge from the hardware resources
of the hypervisor to make them available
to the VM by managing the backend
operations [18]. From the scalability
perspective, it is possible to have multiple
VMs in a virtualization environment, where
each VM is isolated from the other by
principle. The quantity of VMs depends on
the amount of physical resources available
for such an environment.

The hypervisor is a software layer
responsible for managing the hardware
and explicitly making it available to the
upper layers [12]. It has privileged access
to the hardware resources and can allocate
it accordingly to the operating systems.
Examples of hardware resources or devices
are: storage memory, network device, I/O
devices, etc. The hypervisor is responsible
for memory management, scheduling
tasks, basic Inter-Process Communication
(IPC). For security reasons, the hardware
should not be shared directly by different
operating systems. However, the hypervisor
can provide virtual copies of the same
hardware to other operating systems [13].
Many computer architectures have specific
privilege levels to run the hypervisor, such
as EL2 on ARM and HS-mode on RISC-V.
Examples of hypervisors are Xen, KVM,
ACRN9, Bao10, and seL4.

The hypervisors can be categorized into
type-1 and type-2. The type-1 hypervisors
runs on bare metal (i.e., directly on the host
machine's physical hardware) and type-2
hypervisors, also called hosted hypervisors,
runs on top of an operating system [14].
The type-1 hypervisors are considered more
secure by not relying on a host operating
system. KVM is an example of type-2
hypervisor by running on Linux kernel while
seL4 is an example of type-1 hypervisor.

Virtualization is a technique
that allows several operating
systems to run side-by-
side on given hardware [7]
[8]. Virtualization brings
different kinds of benefits
to the environment that it is
deployed. One of the benefits
would be the heterogeneity
that it can bring, being possible
to deploy various operating
systems and applications
in the same hardware [9].
Moreover, it improves the
system's security by achieving
security by separation [10]
[11]. It is achieved as each
operating system has its own
space, not having an explicit
connection with others,
keeping software instances
isolated. Nevertheless,
virtualization requires a
software layer responsible for
system management, known
as a hypervisor.

The Figure 1 presents a high-level overview of the components present in a virtualization
environment: hardware resources or devices, hypervisor, Virtual Machine Monitor, and Virtual
Machine. As we can have different hypervisors, the configuration of the upper layers (VMM and
VM) will rely on the chosen hypervisor.

Figure 1 Overview of a virtualization environment

11

9	 https://projectacrn.org/
10	http://www.bao-project.org/
11	https://firecracker-microvm.github.io/
12	https://chromium.googlesource.com/chromiumos/platform/crosvm/
13	https://www.qemu.org/

Hypervisor

Hardware

VM 0 VM 1 VMn

VMM 0 VMM 1 VMMn

Memory
Management

Scheduling Basic IPC

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute12

Related hypervisors and VMMs

runs Linux to manage other guests, named
DomU14. A DomU is the counterpart to
Dom0; it is an unprivileged domain with (by
default) no access to the hardware. DomU’s
use Dom0’s para-virtualized services
through Xen PV calls. Recently, the Dom0-
less variant was introduced. With Dom0-
less15, Xen boots selected VMs in parallel on
different physical CPU cores directly from
the hypervisor at boot time. Xen Dom0-less
is a natural fit for static partitioning, where
a user splits the platform into multiple
isolated domains and runs different
operating systems on each domain.

Traditionally, KVM and Xen hypervisors
were designed to be deployed at the Cloud
Computing level to provide virtualization
to high-density machines. However, recent
solutions were developed to use those kinds
of hypervisors also at the Edge level [23]
[24], being able to have such virtualization
solutions in devices with less processing
power than the servers at the Cloud [25]
[26] [21]. There are also hypervisors that
were designed in a lightweight manner,
with the intention to be applied in resource-
constrained environments at the Edge level.
Examples of lightweight hypervisors are
Bao [27] and ACRN [28], among others.

KVM relies in user space tools such as the
Quick Emulator (QEMU) [30] to serve as
VMM and instantiating virtual machines.
In the KVM paradigm guests are seen by
the host as normal POSIX processes, with
QEMU residing in the host userspace and
utilizing KVM to take advantage of the
hardware virtualization extensions [22].
Other VMM can be use on top of KVM, as
Firecracker, Cloud Hypervisor and crosvm.
Firecracker uses the KVM to create and
manage microVMs. Firecracker has a
minimalist design. It excludes unnecessary
devices and guest functionality to
reduce the memory footprint and attack
surface area of each microVM [31].
Cloud Hypervisor focuses on exclusively
running modern, cloud workloads, on top
of a limited set of hardware architectures
and platforms. Cloud workloads refers to
those that are usually run by customers
inside a cloud provider. Cloud Hypervisor
is implemented in Rust and is based on
the rust-vmm18 crates. The crosvm VMM
is intended to run Linux guests, originally
as a security boundary for running native
applications on the Chrome OS platform.
Compared to QEMU, crosvm does not
emulate architectures or real hardware,
instead concentrating on para-virtualized
devices, such as the VirtIO [32] standard.

KVM (Kernel-based Virtual Machine) is a
type-2 hypervisor that added virtualization
capabilities to Linux. KVM is integrated
in the Linux kernel, thus benefiting from
reusing many Linux functionalities such
as memory management and CPU
scheduling. The downside of it is the huge
TCB that comes along KVM. The KVM
was originally built for x86 architecture
and then ported to ARM [21]. The KVM
on ARM implementation has been split
in the so-called Highvisor and Lowvisor.
The Highvisor lies in ARMs kernel space
(EL1) and handles most of the hypervisor
functionalities. The Lowvisor resides in
hypervisor mode (EL2) and is responsible
for enforcing isolation, handling hypervisor
traps and performing the world switches
(context execution switches between VMs
and host) [22].

Xen is defined as a type-1 hypervisor.
The x86 version of Xen, is a bare-metal
hypervisor that supports both fully
virtualized and para-virtualized guests. On
ARM, the code for Xen is reduced to one
type of guest which uses para-virtualized
drivers and the ARM virtualization
extensions [22]. The Xen hypervisor resides
in hypervisor mode. On top of it, everything
is executed as a guest placed in different
domains. The most privileged domain is
called Dom0, it has access to hardware and

Bao is a lightweight bare-metal hypervisor
designed for mixed-criticality systems.
It strongly focuses on isolation for fault-
containment and real-time behavior. Its
implementation comprises a thin layer
of privileged software leveraging ISA
virtualization support to implement a
static partitioning hypervisor architecture
[27]. ACRN targets itself to IoT and Egde
systems, placing a lot of emphasis to
performance, real-time capabilities and
functional safety. ACRN currently only
supports x86 architectures, and as it is
mainly backed by Intel, support to other
architectures may not appear any time
soon [28].

Gunyah16 is a relatively new hypervisor
by Qualcomm. It is a microkernel design
with capability access controls. Gunyah
being a new project has a very limited
HW support, and practically non-existent
community outside Qualcomm. KVMs17
is an aarch64 specific hypervisor, building
upon popular KVM, bringing a lot of
flexibility for example in terms of choice
of VMMs. Thanks to a small size, it is
possible to formally verify hypervisor EL2
functionality [29]. While there are a lot of
benefits, it is limited to on CPU architecture,
and maintaining KVMs patch series across
several versions of Linux kernel may
become an issue.

Apart from seL4, there are
other open source hypervisors
available in the market. KVM
and Xen are examples of
traditional hypervisors that
have been in the market
for more than 15 years and
were deployed in different
solutions [19] [20]. While
both hypervisors are widely
used, feature rich and well
supported, the huge TCB
makes them vulnerable.

13

14	https://wiki.xenproject.org/wiki/DomU
15	https://xenproject.org/2019/12/16/true-static-partitioning-with-xen-dom0-less/
16	https://github.com/quic/gunyah-hypervisor
17	https://github.com/jkrh/kvms
18	https://github.com/rust-vmm

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute14

seL4 VMM

The CAmkES project is a framework for
running virtualized Linux guests on seL4
for ARM and x86 platforms. The camkes-
vm implements a virtual machine monitor
(VMM) server, facilitating the initialization,
booting and run-time management of a
guest OS [34]. The CAmkES project provides
an easy way to run different virtualization
examples with one or more VMs and
different applications. It also provides a
way how to passthrough devices in such
environments. One drawback of such a
framework is that it is only possible to run
static VMs, in which the VM configuration
should be defined at design time.

CAmkES proved to be too complex, static
and maintenance intensive. Because of
this reason, many projects and companies
have rolled their own user space. As the
VMM is in the user space, the challenges
and limitations are imminent in the
virtualization too. To remedy the situation,
the seL4 community is introducing seL4
Core Platform [35] [36], or seL4cp, and
seL4 Device Driver Framework19, or sDDF.
The two new components are attempts to
fix the shortcomings of CAmkES. This also
means that the VMM parts will be changed
significantly too.

The seL4 supports virtualization by
providing specifically two libraries:
(i) \textit{libsel4vm}, and (ii)
libsel4vmmplatsupport [33]. The first (i) is a
guest hardware virtualization library for x86
(ia32) and ARM (ARMv7/w virtualization
extensions \& ARMv8) architectures. The
second (ii) is a library containing various
VMM utilities and drivers that can be used
to construct a guest VM on a supported
platform. These libraries can be utilized to
construct VMM servers through providing
useful interfaces to create VM instances,
manage guest physical address spaces
and provide virtual device support (e.g.,
VirtIO Net, VirtIO PCI, VirtIO Console).
Projects exist that make use of the seL4
virtualization infrastructure, supporting the
provision of virtualization environments.
Examples of those kinds of projects are
CAmkES and Core Platform.

The Core Platform provides the following
abstractions: protection domain (PD),
communication channel (CC), memory
region (MR), and notification and protected
procedure call (PPC). A VM is a special
case of a PD with extra, virtualization-
related attributes. The original version of
the seL4CP was fully static, in that all code
had to be fixed at system build time, and
PDs could not be restarted. The addition
of dynamic features is in progress [37].
The seL4 Device Driver Framework (sDDF)
provides libraries, interfaces and protocols
for writing/porting device drivers to run as
performant user level programs on seL4.
The sDDF also aims to be extended to a
device virtualization framework (sDVF) for
sharing devices between virtual machines
and native components on seL4.

Even though the seL4 VMM exists and
is available to use, it lacks in providing
essential features for virtualization
support in complex scenarios. Moreover,
its fragmentation by different closed-
source deployments makes the mainline
depreciate fast. Thus, it is necessary to
discuss the desired features for such a
standard VMM.

An Operating System (OS)
microkernel is a minimal core
of an OS, reducing the code
executing at higher privilege
to a minimum. The seL4 is a
microkernel and hypervisor
capable of providing
virtualization support [1]. It
has a small trusted computing
base (TCB), making a minor
surface attack compared to
traditional hypervisors such as
KVM and Xen.

15

19	https://sel4.atlassian.net/browse/RFC-12

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute16

Philosophy
of a Standard VMM

For this discussion, driving philosophical
concepts can be roughly binned into Design
Principles and Feature Support Tenets.
The Design Principles and Feature Support
Tenets were defined based on features
present in already available VMMs and the
technical challenges they posed. A deeper
discussion about the Design Principles and
Feature Support Tenets will be needed
before implementation at seL4 mainline.
This list intends to serve as a starting point
for discussing such topics.

but cannot lock an adopter
into specific implementations.
Each adopting integrator
will inevitably start from the
new standard and refine the
implementation for their use
case. One size does not fit all,
so customization will always
occur. The effort here is to
close the gap between the
current VMM baseline and the
point of necessary deviation.
Refinement should only be
necessary to cover specific
requirements and edge cases
highly unlikely to appear in
multiple projects across the
integrator community.

It should be immediately
obvious that even a community
as small as the commercial
users of seL4 will have
difficulty agreeing to an all-
encompassing standard.
Thus, what is proposed is to
establish a driving philosophy
for the design of a baseline
VMM rather than prescribe a
specific system architecture.
There is the need to discuss
the possible missing features
of the existing seL4 VMM [33]
concerning a standard VMM,
more so than a prescription for
the right way to do it. Indeed,
this will entail recommending
high-level architecture patterns

17

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute18

Design Principles

Modular: Maintainable and Upgradable

It is expected that the standardized VMM
would be deployed in heterogeneous
environments and scenarios under quite
varied use cases. This will require flexibility
in aspects such as system architecture,
hardware requirements, performance, etc.
It is essential to follow a modular design
approach to guarantee the applicability of
the VMM in any of those variants.

In implementing the VMM modularly, it
is essential to achieve its readability by
following the C4 (Context, Containers,
Components, and Code) model, for
instance. The C4 model is an "abstraction-
first" approach to diagramming software
architecture [39]. It decomposes the
system so community members can pick
and choose components for their project.
The Context shows how the software
system in scope fits into the environment
around it. Containers inside a Context
define the high-level technical building
blocks. A Component is a zoom-in to
an individual Container and shows its
responsibilities and implementation details.
Finally, Code is a specific description of how
a Container is implemented. The modular
approach makes it possible for integrators
to define the Context, Containers,
Components, and Code that must be
pieced together for a VMM to support
specific features, making their VMM highly
customized to their end goal.

Additionally, it is essential to consider and
accommodate the rather large differences
architecture-wise, even with the same ISA
implementation. For example, Codasip20
and SiFive21 implementations of RISC-V
have non-ignorable differences, while
ARM implementations from Qualcomm,
Samsung, and NXP exhibit wildly different
behavior [41]. Though SoC vendors may be
compliant with the ISA specification, there
usually is some collection of deviations or
enhancements present, often implemented
as a black-box binary. Areas of concern
include control of the system’s Memory
Management Units, Generic Interrupt
Controller, TPM/TEE, secure boot process,
and access to the appropriate privilege
level for the seL4 kernel (e.g., EL2 for
Qualcomm-ARM).

Official and Open Source

The existing seL4 VMM [33] employs
an open-source license, and any new
implementations under the proposed
standard should remain in accordance
with this approach. This applies to all
the code up to the point of necessary
differentiation. Individual integrators
should always retain the ability to keep
closed-sourced their highly specialized or
trade secret modifications. This strikes a
balance between business needs such as
maintaining a competitive edge and fully
participating in a collaborative community
around a common baseline. Open sourcing
the standard VMM is essential for the seL4
community to engage collaboratively and
improve the VMM by either contributing
to the source code repository or using and
learning from it.

It is recommended to place the standard
VMM baseline under the purview of
the seL4 Foundation to benefit from
the structure and governance of that
organization. The desire is that it will gain
in stature as well, as the current VMM is
a second-class citizen in the community.
Alongside the source code, the Foundation
should periodically publish reports about
major updates and possible new directions
as new technologies mature. In this way, it
will help to maintain a long-term roadmap
to incorporate new features such as ARMv9
Realms [38], for instance.

Portable: Hardware Independence

The seL4 community has done a
phenomenal job in supporting seL4 across
a variety of hardware platforms [40]. The
VMM should be generic enough to support
them as well. This may be a lofty goal.

One good starting point may be to design
and write the VMM to support popular
hardware such as ARM, x86, and RISC-V
Instruction Set Architecture. This will ensure
the standard VMM is not explicitly linked to
a specific set of hardware characteristics.
Of course, different ISAs may impose
architectural differences. However, there is
the need for a minimal and modular VMM
that could be easily moved from 4 core
ARM SoC (big.LITTLE) to a 48-core Thread
Ripper AMD x86, as an example.

The standard VMM could be seen
as a baseline for different hardware
implementations. Obviously, the baseline
will not take advantage of all the platforms'
hardware features. However, it can be used
for Proof-of-Concept implementation and
learning purposes for being easy to deploy
on different platforms.

Five major design principles
are recommended as potential
directions towards the
standard VMM. They are
motivated to be open, modular,
portable, scalable, and secure.

19

20	https://sel4.atlassian.net/browse/RFC-12
21	https://www.sifive.com/

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute20

Secure by Design

A security by design approach requires
enforcing as much isolation as possible at
every level of implementation. A standard
seL4 VMM implementation should support
one VMM instance per VM. Even though
this approach is well followed by most of
the integrators and supported by seL4, it
is important to highlight its benefits. This
approach improves both scalability and
security of the solution.

If a guest OS is compromised, it opens an
attack vector toward the VMM. However, the
risk is limited if there is a dedicated VMM
per VM. The other VMs, their VMMs, and
guest OSes are completely isolated by the
stage 2 translation. This assumes a formally
verified kernel and that the translation
tables or the memory areas the tables point
to are distinct for each VM.

Though this approach is already
common today, some integrators do not
always implement it for time-to-market
pressure, reusable code, or other unusual
circumstances. Support for this design
should be standardized so that the enabling
code can be considered boilerplate
and easily consumed. Figure 2 shows a
representation of a secured by design
architecture, with one VMM per VM. Even
though the VMM has more direct interaction
with the hypervisor, it is placed in the User
Mode. The VMs are present at both User and
Kernel modes, as they can have applications
and drivers, respectively.

Scalable: Application-agnostic

A standard VMM should be scalable in
the sense that it needs to be able to
support several applications running on
top for different specific purposes. Different
applications may have a distinct set of
requirements such as performance, safety,
security, or real-time. The VMM should
be able to meet those requirements and
provide a way for the applications to
reach them. Moreover, the VMM should
guarantee that the applications will run as
expected, being able to initiate and finish
the tasks successfully. A VMM scheduler
should be responsible for balancing the
loads and ensuring that no application (i.e.,
thread) is left unattended.

The scalability of the systems is also tied
to their performance. In light of this, it
is essential that the VMM supports from
one to an arbitrary number of processing
units or cores. The existing seL4 VMM
does not support multiprocessing and
consequently highly restricts the number of
applications that can be run atop. Enabling
multiprocessing would help achieve better
performance, thus improving the scalability
of the system performance as a whole. We
discuss in detail the possibilities to enable
multicore VMM further in this paper in the
Multicore & Time Isolation section.

21

Figure 2 Example of an architecture with one VMM per VM

Containers

Containers

seL4 Hypervisor

Hardware

Containers

Containers

VM 0 VMn

VMM 0 VMM 0User Mode

Hypervisor Mode

Kernel Mode

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute22

Feature Set Support Tenets

personality for the seL4 microkernel.
The Core Platform makes seL4-based
systems easy to develop and deploy
within the target areas. It can be used
to bring up VMs on top of seL4. Core
Platform promises to deliver dynamic
features to the seL4 environment
[35]. However, it is still in progress
with ongoing virtualization features
in development22. The Trustworthy
Systems - UNSW23 group also intends to
formally verify two core aspects of the
seL4 Core Platform24: (i) correctness of
the implementation, i.e. its abstractions
function as specified, and (ii) correctness
of the system initialization, i.e. the
collection of underlying seL4 objects
are fairly represented by the system
specification.

A new VMM standard should enhance
the existing static build approach
with a build-time specification stating
that dynamic configurations are also
permitted. They could be limited by
providing build-time parameters for
acceptable configurations. To achieve
a dynamic environment, it should be
possible to use the seL4 mechanisms
for transferring/revoking capabilities to
the entities during runtime, providing a
potential implementation mechanism
for this feature. It may also be an option
to build a core common component to
serve as an “admin VM” for dynamic
configurations, even subjecting it
to some degree of formal methods
verification. This is anticipated to be an
area of much research and prototyping
to achieve the desired balance of
security and flexibility.

System Configuration

Currently, there are two main
approaches to facilitate the system
configuration when running virtual
environments on top of seL4. The first
to be introduced was CAmkES, that
stands for Component Architecture
for microkernel-based Embedded
Systems [42]. The second one is seL4
Core Platform (seL4CP) [35]. The Core
Platform, which was recently introduced,
intends to be the standard for such
virtual environments on top of seL4.
Thus, the CAmkES is being deprecated.

CAmkES is a software development
and runtime framework for quickly and
reliably building microkernel-based
multiserver (operating) systems [42].
Currently, using the CAmkES framework
with the VMM will result in a fully
static configuration. The VMs must be
defined and configured during the build.
This also includes defining the RAM
area. It is designed to achieve security
guarantees so as not to allow post-build
modifications to the number of running
VMs and their interconnections. This
is a highly desirable aspect when the
use case calls for it. However, it can
be inflexible and even short-sighted
when the nature of the user experience
requires dynamic configuration, i.e. no
dynamic start/stop/restart capability.

It is often necessary to have a more
dynamic seL4-based environment for
the purpose of allowing better usability,
modularity, or even scalability. The Core
Platform is an operating system (OS)

Multicore & Time Isolation

One of the key aspects of virtualization
is the need for efficiency, where
multiprocessing configurations play
an important role. Although multicore
support is a complex engineering task,
it should be supported in its simplest
shape to avoid contention and potential
deadlocks. Different physical CPUs
(pCPUs) can be enabled by the kernel
(in a Symmetric Multiprocessing - SMP
configuration) in order to allocate them
to a different system running threads
according to the use-case application
requirements. Next, we present
potential multi-core configurations
that a standard VMM should be able to
support using a clear multiprocessing
protocol:

Four major features are
recommended as potential
directions towards the
standard VMM to support
hardware mechanisms
and provide security and
performance benefits.

23

22	https://github.com/Ivan-Velickovic/sel4cp/tree/virtualisation_support
23	https://trustworthy.systems/about/
24	https://trustworthy.systems/projects/TS/sel4cp/verification

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

Direct Mapping Configuration:
Multiple single-core VMs running concurrently and physically distributed over dedicated CPUs.
Figure 3 shows the representation of the Direct Mapping Configuration approach.

Hybrid Multiprocessing Configuration:
It can have multiple single-core VMs running in dedicated CPUs as the Direct Mapping
Configuration, however, it can also have multicore VMs running in different CPUs. Figure 4 shows
the representation of the Hybrid Multiprocessing Configuration approach.

Figure 4 Hybrid Multiprocessing Configuration overviewFigure 3 Direct Mapping Configuration overview

TII Technology Innovation Institute24 25

Guest 0 Guest 1 Guest 2 Guest 3

VCPU 0

VMM 0

PCPU 0

seL4 Hypervisor (Symmetric Multiprocessing)

VCPU 1

VMM 1

PCPU 1

VCPU 2

VMM 2

PCPU 2

VCPU 3

VMM 3

PCPU 3

Guest 0
(smp)

Guest 1
(smp)

Guest 2
(single core)

VCPU 0 VCPU 0

VMM 1:0 VMM 1:1

VCPU 0 VCPU 0

VMM 0:0 VMM 0:1

PCPU 0

seL4 Hypervisor (Symmetric Multiprocessing)

PCPU 1 PCPU 2

VCPU 3

VMM 2:0

PCPU 3

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute26

pIRQ/vIRQs ownership: physical
interrupts (pIRQs) shall be virtualized
(vIRQs) and require a multiprocessing
protocol with simple acquire/release
ownership of interrupts per pCPU/vCPU
targets. Besides, support hardware-
assisted interrupt-controllers with
multicore support is required.

Inter-vCPU/inter-pCPU communication:
Another key aspect of multiprocessing
architectures is the ability to
communicate between pCPUs. Also,
with equal importance, communication
between vCPUs results in not only
inter-pCPU but also inter-vCPU
communication. Communication is very
important in multiprocessing protocols,
but it should be designed in a way that is
simple to verify and validate.

Other features that are likely required
by multicore design are:

vCPUs Scheduling: The ability to
schedule threads on each pCPU based
on their priority, credit-based time
slicing, or budgeting depending on the
algorithm selected. As an example,
It could be a design configuration
whether it supports vCPU migration
(a vCPU switching from pCPU id:0 to
id:1) with also the possibility to tie up
a set of the vCPUs to pCPUs. Another
potential configuration is the static
partitioning one, where all the vCPUs
are assigned to pCPUs at design-time
and are immutable at run-time. In
addition, having dynamic and static
VMs configuration in a hybrid mode
could be something to support. A
multiprocessing protocol with acquire/
release ownership of vCPUs should
be supported. The seL4 kernel has a
scheduler that chooses the next thread
to run on a specific processing core,
and is a priority-based round-robin
scheduler. The scheduler picks threads
that are runnable: that is, resumed,
and not blocked on any IPC operation.
The scheduler picks the highest-priority,
runnable thread (0~255). When multiple
TCBs are runnable and have the same
priority, they are scheduled in a first-in,
first-out round-robin fashion. The seL4
kernel scheduler could be extended for
the VMMs.

The two depicted configurations are
examples for future reference of a
standard VMM, but it is not strictly
limited. Most, if not all, current and
near-future use cases are covered by a
model where there are multicore VMMs
that are pinned to exclusive cores and
unicore VMMs that can be multiplexed
on a core. Ideally, it would be up to
the system designer to decide which
configuration to use. It could be either
static or dynamic, enabling switching
from a given configuration to another in
run-time. The selected configuration will
affect several threads in execution.

In the seL4 context, threads can be
running either Native apps, OSes, and/
or VMMs. The former is typically used
to run device drivers or support libraries.
OSes are using threads running over
virtual abstractions, or VMs, while VMMs
are creating and multiplexing these
abstractions to be able to encapsulate
OSes. They all require an abstraction
representing the pCPU time but differ
from the supported execution level
and their scope over other system
components. For example, a VMM can
access the VM internals but not the
opposite.

small memory segments shared with
other VMs, (ii) hiding physical platform
memory segments or devices from the
VMs, (iii) no need to recompile a non-
relocatable VM image.

Device memory isolation by hardware-
support or purely software: Devices
that are connected to the System-on-
Chip (SoC) bus interconnection and
are masters can trigger read and write
DMA transactions from and to the
main memory. This memory, typically
DRAM, is physically shared and logically
partitioned among different VMs by
the hypervisor. Some requirements
could be met in a standard VMM: (i)
a device can only access the memory
of the VM it belongs to; (ii) the device
could understand the virtual AS of its
VM; and (iii) the virtualization layer
could intercept all accesses to the device
and decode only those that intend to
configure its DMA engine in order to do
the corresponding translation if needed,
and control access to specific physical
memory regions. In order to meet these
three requirements a standard VMM
requires support for either an IOMMU
(with one or two stage translation
regimes) or software mechanisms for
mediation.

Cache isolation through page-
coloring: Micro-architectural hardware
features like pipelines, branch
predictors, and caches are typically
available and essential for well
performant CPUs. These hardware
enhancements are mostly seen as
software-transparent but currently
leaving traces behind and opening up
backdoors that can be exploited by
attackers to break memory isolation
and consequently compromising the

Memory Isolation

All virtual services need to access
memory to do their work. The memory
needs to be a shared resource used
to run code and services. We need to
strike the appropriate balance between
ensuring that memory is a shared
resource and is securely accessed by
competing engines and services.

Memory isolation is critical to enforce
the security properties such as VMs
confidentiality and integrity. Hardware-
enforced and partial microkernel
access-controlled memory translation
and protection between VMs/VMMs
and Native Apps are key security
requirements for security-critical use-
cases. Support for hardware-assisted
virtualization (extended Page Tables
or second-stage) MMU should be an
integral part of the standard VMM.

Next, are some features for future
reference that can leverage such
hardware for memory isolation: (i)
configurable VM Virtual Address Space
(VAS); (ii) device memory isolation; and
(iii) cache isolation.

Configurable VM Virtual Address
Space: Multiple virtual Address Spaces
are an important feature supported by
high-end processors and have the same
paramount importance for hardware-
assisted virtualization. There should
be different Virtual Address Spaces for
different software entities: Hypervisor,
VMM, and their respective VMs. User-
controlled and configurable address
spaces are important features for VMs.
For example, (i) setting up a contiguous
virtual address space ranges from
fragmented physical memory as well as

memory confidentiality of a given
VM. One mitigation for this problem
is to apply page coloring in software
and could be an optional feature
supported by a standard VMM. Page
coloring is meant to map frame pages
to different VMs without colliding
into the same allocated cache line. A
given cache allocated by a VM cannot
evict a previously allocated cache line
by another VM. This technique, by
partitioning the cache in different colors,
can protect to some extent (shared
caches) against timing cache-based side
channel attacks, however, it strongly
depends on some architectural/platform
parameter limitations such as cache
size, number of ways and page size
granularity used to configure the virtual
address space. L1 cache is typically
small and private to the pCPU while L2
cache is typically bigger and seen as the
last level of cache that is shared among
several pCPUs. It would be possible to
assign a color to a set of VMs based
on their criticality level. For example,
assuming the hardware limits the
system to encode up to 4 colors, where
one color can be shared by a set of
non-critical VMs, other for real-time VM
for deterministic behavior, and the other
two for a security- and performance-
critical VM that requires increased cache
utilization and at the same isolation
against side-channel attacks.

27

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute28

The OASIS collaboration community
manages the set of VirtIO standards
[32] that are implemented to various
degrees by Linux and Android. Given the
excellent support, it is recommended
to adopt VirtIO implementations for
multiple interfaces in the standard
VMM. Support for standardized VirtIO
server implementations in the VMM
would be a meaningful complement to
guest OS clients. For instance, the VirtIO-
Net server in the VMM could store a
table of MAC addresses, creating a
virtual switch. In the case of the VirtIO-
Block server, the VMM could terminate
VirtIO-Block requests so that address
mappings are not known by the user-
facing guest OS, then start up another
request to the VM containing the device
driver to perform the actual write. For
instance, in complex architectures with
more than one guest OS accessible from
the user perspective, VMM VirtIO servers
could also handle multiplexing access to
various devices between VMs, creating a
“multi-persona” capability.

Among the possibilities of implementing
VirtIO interfaces, the following items
present examples of how it can be used
and integrated with a standard VMM:

VirtIO can be used for interfacing VMs with host device drivers. It can support VirtIO driver
backends and frontends on top of seL4. VirtIO interfaces can be connected to open-source
technologies such as QEMU, crosvm, and Firecracker, among others. In this scenario, the open-
source technologies will execute in the user space of a VM different from the one using the device
itself. This approach helps in achieving reusability, portability, and scalability. Figure 5 shows
the representation of such an approach considering a VirtIO Net scenario in which a Guest VM
consumes the services provided by a back-end Host VM.

Hypervisor-agnostic I/O Virtualization
and its derivations

Many security use-cases require
virtualization environments with
reduced privilege such that only specific
VMs, called driver VMs, can directly
access hardware resources while
the others, called User VMs, run in a
driverless mode since device drivers are
seen today as a major source of bugs. A
compromise caused by exploitation of
a driver bug can be contained in its own
VM. Typically, in such environments, any
VM that will potentially run unknown
code and/or untrusted applications may
require isolation from key device drivers
sequestered into their dedicated VMs.
Inter-VM communication, including
access to the devices, must be done by
proxy over well-known and managed
interfaces. This approach requires a
combination of VM kernel modifications
and VMM modules to be able to
communicate and share basic hardware
devices over virtual interfaces.

29

Figure 5 VirtIO drivers example on top of seL4 hypervisor25	https://trustworthy.systems/projects/TS/drivers/

seL4 Hypervisor

Hardware

VMM 0 VMM1

VirtlO Net

Device Driver

Physical Device

Guest VM Host VM

QEMU

VirtlO back-end

Figure 6 VirtIO interfaces considering a formally verified Device Driver

seL4 Hypervisor

Hardware

Multiplexer
Device
DriverVMM 0

VMMnVirtlO Net

Physical Device

VMnVM 0

VirtIO interfaces can be connected to formal verified native device drivers. The use of such
kinds of device drivers increases the security of the whole system. Moreover, the verified device
drivers can be multiplexed to different accesses, switching device access between multiple clients.
The multiplexer is transparent to native clients, as it uses the same protocol as the (native)
clients use to access an exclusively owned device. Figure 6 shows the representation of a device
virtualization through a multiplexer. In this example each device has a single driver, encapsulated
either in a native component or a virtual machine, and is multiplexed securely between clients.25

VirtIO also includes standards for Touch,
Audio, GPU, and a generic VirtIO-
Socket interface which can be used to
pass data of any form. Standardized
implementations for these are not
mature or widely available outside of
the automotive use case. OpenSynergy
actively worked with Google and
Qualcomm to include these interfaces
in Android Auto [43]. It may be possible
for the seL4 community to expand those
implementations to other areas through
customer-funded projects.

31

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

25	https://trustworthy.systems/projects/TS/drivers/

TII Technology Innovation Institute30

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute32

Discussion Topics

VMM API

With the seL4 VMM API, it is possible
to follow the one VM per VMM "rule" as
it is a safer approach from a trust point
of view. We could have different flavors
of VMMs, such as QEMU, crosvm, and
cloud-hypervisor, as each one of them
will have its strengths and weakness
[44] [45].

An API would make it possible for
some elements of the VMM not to be
wrapped in a runtime context, like it
is now, because it then already makes
an assumption about the architecture.
That assumption might not be what
most integrators (i.e., companies) are
after. Let's take KVM as an example.
If KVM would provide more than basic
constructs and include runtime context
(essentially VMM), then we would not
be able to have different VMMs (QEMU,
crosvm, cloud-hypervisor). It does not
mean that there is not an API already
in the seL4 environment. But it is pretty
fragmented and not uniform as one
might expect.

The integrators could have an option
to use the seL4 VMM (i.e., with
characteristics similar to the ones
presented in this article) and also
the VMM API to have a more diverse
virtualization environment. There is a
certain minimal subset that a VMM
must handle, like handling the hardware
virtualization of Generic Interrupt
Controller Architecture (GIC) and
handling faults. However, it should also
be possible to define where VirtIO-
console should be handled or that
VirtIO-blk device must be handled by
QEMU in some VM. If someone has a
native VirtIO-backend for some of those
examples, it should be possible to use it.

Apart from the previously
mentioned topics, a seL4
standard VMM could also be
a programmable API rather
than something configured
with static Domain Specific
Language (DSL) during
compilation (e.g., CAmkES).
The API makes it possible to
wrap the functionality to any
compile-time DSLs, custom
native services and enables
run-time dynamism. The API
could have a compile-time
configuration for enabling/
disabling dynamic features.
It should build upon layers
so one can use the low-level
APIs with all seL4-specific
complexity involved, but the
API should keep the seL4-
specific things minimal at a
high level.

3333

Formal Methods

Parts of the standard VMM could be
subject to verification, an example
could be the device drivers. The Device
Virtualization on seL4 project26 has the
long-term goal of formal verify device
drivers, which is enabled by the strong
isolation provided for usermode drivers
on seL4, which allows verifying drivers
in isolation. The seL4 Core Platform
has a working in progress project27 to
formally verify two core aspects of it:
(i) correctness of the implementation
(i.e. its abstractions function as
specified), and (ii) correctness of the
system initialization (i.e. the collection
of underlying seL4 objects are fairly
represented by the system specification).

Currently, the VMM is assigned per each
VM, and thus it is in the VM’s Trusted
Computing Base. If we consider the
scenario in which it is possible to use a
VMM API to run VMMs from different
flavors, the formal verification would
rely just on the minimal part responsible
to execute those VMMs and not in the
VMM itself. The VMM is considered part
of a guest for the purposes of formal
methods, so maintaining the proofs
would be challenging. However, there
may be a specific case to be made
for the standard VMM to be shared
across all VMs in a particular system.
In that instance, the VMM could be
subject to formal methods verification.
However, it would be a complex and
costly undertaking and goes against the
“One VMM Per VM” principle detailed
previously in this document.

No discussion of an seL4
adjacent system is complete
without consideration for the
impact of formal methods.
Since this discussion is
driven by the need for a
VMM which can handle
complex, real-world use
cases, an integrator would
likely be using a hardware
platform for which seL4
does not yet support formal
methods, such as aarch64 or
a multicore configuration. In
this case, the effect of formal
verification is a moot point.
However, in the future, or for
a simpler configuration, we
can still assess the impact.

26	https://trustworthy.systems/projects/TS/drivers/devvirt
27	https://trustworthy.systems/projects/TS/sel4cp/verification

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute34

There has been incredible interest and
innovation in edge computing. But
the edge is more complex and more
pervasive by the day. At the same time,
edge computing devices are becoming
a larger target because of their growing
prevalence and potential damage.

We believe that securing edge
computing needs to evolve to the next
level. Leveraging a provably secure
kernel like seL4 as a baseline will help us
improve system security as a whole.

In addition, we should also adapt
important features already deployed
in other types of systems today. We
need to make it easy to reuse system
configurations across hardware. It is also
essential to ensure support for multicore
systems and time isolation. Memory
isolation can allow us to share resources
securely across processes.

Ultimately, this standard must be put
to the test by making a concerted
effort to build a real-world proof of
concept around it. This will almost
certainly require significant funding
– either of an R&D nature or from an
end customer. Considering the seL4
ecosystem, the first step towards the
definition of a standardized VMM
would be the creation of an RFC for
community discussion and approval.
It will be up to one or more members
of the seL4 community to look for
opportunities to take up this mantle and
be a champion for this initiative. Also,
such kind of standard VMM will only be
successful when discussed within the
seL4 community. Thus, the spread of
such idea through the seL4 community
communication channels is essential.
Moreover, the creation of work groups
within the seL4 Community, around
topics of interest, may be the best
approach to leverage such standard
VMM.

The Technology Innovation
Institute (TII) can draw
from its experience building
hypervisor-based systems
of significant complexity to
conclude that the existing
VMM baseline is not ideal.
It lacks support for many
practical design features. We
can remedy these defects by
collaborating to build a new
VMM standard. We should
consider important principles
to guide these efforts to
ensure the result is open,
modular, portable, scalable,
and secure by design.

Next Steps

3535

Why collaboration on a robust Virtual Machine Monitor (VMM) will deliver on the promise of seL4

TII Technology Innovation Institute36

19 Barham, P.; Dragovic, B.; Fraser, K.;
Hand, S.; Harris, T.; Ho, A.; Neugebauer,
R.; Pratt, I.; Warfield, A. Xen and the
Art of Virtualization. In Proceedings
of the Proceedings of the Nineteenth
ACM Symposium on Operating Systems
Principles; Association for Computing
Machinery: New York, NY, USA, 2003; SOSP
’03, p. 164–177.

20 Chierici, A.; Veraldi, R. A quantitative
comparison between xen and kvm. Journal
of Physics: Conference Series 2010, 219,
042005.

21 Dall, C.; Nieh, J. KVM/ARM: The Design
and Implementation of the Linux ARM
Hypervisor. SIGPLAN Not. 2014, 49,
333–348.

22 Raho, M.; Spyridakis, A.; Paolino,
M.; Raho, D. KVM, Xen and Docker: A
performance analysis for ARM based NFV
and cloud computing. In Proceedings of
the 2015 IEEE 3rd Workshop on Advances
in Information, Electronic and Electrical
Engineering (AIEEE), 2015, pp. 1–8.

23 Mansouri, Y.; Babar, M.A. A review of
edge computing: Features and resource
virtualization. Journal of Parallel and
Distributed Computing 2021, 150,
155–183.

24 Ramalho, F.; Neto, A. Virtualization
at the network edge: A performance
comparison. In Proceedings of the 2016
IEEE 17th International Symposium on A
World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2016, pp. 1–6.

Emilia Balas, V., Eds.; Academic Press, 2020;
Vol. 6, Advances in Ubiquitous Sensing
Applications for Healthcare, pp. 183–214.

11 Martins, J.; Alves, J.; Cabral, J.; Tavares,
A.; Pinto, S. µRTZVisor: A Secure and Safe
Real-Time Hypervisor. Electronics 2017, 6.

12 Smith, J.; Nair, R. Virtual machines:
versatile platforms for systems and
processes; Elsevier, 2005.

13 Russell, R. Virtio: Towards a de-Facto
Standard for Virtual I/O Devices. SIGOPS
Oper. Syst. Rev. 2008, 42, 95–103.

14 Vojnak, D.T.; Ðorđević, B.S.; Timčenko,
V.V.; Štrbac, S.M. Performance Comparison
of the type-2 hypervisor VirtualBox and
VMWare Workstation. In Proceedings of
the 2019 27th Telecommunications Forum
(TELFOR), 2019, pp. 1–4.

15 Azmandian, F.; Moffie, M.; Alshawabkeh,
M.; Dy, J.; Aslam, J.; Kaeli, D. Virtual Machine
Monitor-Based Lightweight Intrusion
Detection. SIGOPS Oper. Syst. Rev. 2011,
45, 38–53.

16 Rosenblum, M.; Garfinkel, T. Virtual
machine monitors: current technology and
future trends. Computer 2005, 38, 39–47.

17 Tickoo, O.; Iyer, R.; Illikkal, R.; Newell, D.
Modeling Virtual Machine Performance:
Challenges and Approaches. SIGMETRICS
Perform. Eval. Rev. 2010, 37, 55–60.

18 Xu, F.; Liu, F.; Jin, H.; Vasilakos, A.V.
Managing Performance Overhead of Virtual
Machines in Cloud Computing: A Survey,
State of the Art, and Future Directions.
Proceedings of the IEEE 2014, 102, 11–31.

1 G. Heiser, “The seL4 Microkernel. An
Introduction Whitepaper,” revision 1.2.

2 Services, Training and Products endorsed
by the Foundation, 2022.

3 seL4 Foundation Membership, 2022.

4 Elphinstone, K.; Heiser, G. From L3 to
SeL4 What Have We Learnt in 20 Years
of L4 Microkernels? In Proceedings of
the Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems
Principles; Association for Computing
Machinery: New York, NY, USA, 2013; SOSP
’13, p. 133–150.

5 seL4 Project. Frequently Asked Questions
on seL4, 2022.

6 seL4 Project. seL4 Foundation, 2022.

7 Chiueh, S.N.T.c.; Brook, S. A survey on
virtualization technologies. Rpe Report
2005, 142.

8 Popek, G.J.; Goldberg, R.P. Formal
Requirements for Virtualizable Third
Generation Architectures. Commun. ACM
1974, 17, 412–421.

9 Tiburski, R.T.; Moratelli, C.R.; Johann,
S.F.; de Matos, E.; Hessel, F. A lightweight
virtualization model to enable edge
computing in deeply embedded systems.
Software: Practice and Experience 2021,
51, 1964–1981.

10 Moratelli, C.R.; Tiburski, R.T.; de Matos, E.;
Portal, G.; Johann, S.F.; Hessel, F. Chapter 9
- Privacy and security of Internet of Things
devices. In Real-Time Data Analytics for
Large Scale Sensor Data; Das, H.; Dey, N.;

Bibliography

37

TII Technology Innovation Institute38

40 seL4 Project. Supported Platforms, 2022.

41 Pinto, S.; Santos, N. Demystifying Arm
TrustZone: A Comprehensive Survey. ACM
Comput. Surv. 2019, 51.

42 Kuz, I.; Liu, Y.; Gorton, I.; Heiser, G.
CAmkES: A component model for secure
microkernel-based embedded systems.
Journal of Systems and Software 2007,
80, 687–699. Component-Based Software
Engineering of Trustworthy Embedded
Systems,

43 Open Synergy. Android Ecosystem, 2022.

44 Randal, A. The Ideal Versus the Real:
Revisiting the History of Virtual Machines
and Containers. ACM Comput. Surv. 2020, 53.

45 Zhang, X.; Zheng, X.; Wang, Z.; Li,
Q.; Fu, J.; Zhang, Y.; Shen, Y. Fast and
Scalable VMM Live Upgrade in Large
Cloud Infrastructure. In Proceedings of
the Proceedings of the Twenty-Fourth
International Conference on Architectural
Support for Programming Languages
and Operating Systems; Association for
Computing Machinery: New York, NY, USA,
2019; ASPLOS ’19, p. 93–105.

31 Agache, A.; Brooker, M.; Iordache,
A.; Liguori, A.; Neugebauer, R.; Piwonka,
P.; Popa, D.M. Firecracker: Lightweight
Virtualization for Serverless Applications.
In Proceedings of the 17th USENIX
Symposium on Networked Systems Design
and Implementation (NSDI 20); USENIX
Association: Santa Clara, CA, 2020; pp.
419–434.

32 Tsirkin, M.S.; Huck, C. Virtual I/O Device
(VIRTIO) Version 1.1. OASIS Committee
2018.

33 seL4 Project. Virtualisation on seL4,
2022.

34 seL4 Project. CAmkES VMM, 2022.

35 seL4 Project. The seL4 Core Platform,
2022.

36 Leslie, B.; Heiser, G. The seL4 Core
Platform, 2022.

37 Leslie, B.; Heiser, G. Evolving seL4CP Into
a Dynamic OS, 2022.

38 Li, X.; Li, X.; Dall, C.; Gu, R.; Nieh, J.; Sait,
Y.; Stockwell, G. Design and Verification of
the Arm Confidential Compute Architecture.
In Proceedings of the 16th USENIX
Symposium on Operating Systems Design
and Implementation (OSDI 22); USENIX
Association: Carlsbad, CA, 2022; pp.
465–484.

39 Vázquez-Ingelmo, A.; García-Holgado,
A.; García-Peñalvo, F.J. C4 model in a
Software Engineering subject to ease the
comprehension of UML and the software.
In Proceedings of the 2020 IEEE Global
Engineering Education Conference
(EDUCON), 2020,pp. 919–924.

25 Hwang, J.Y.; Suh, S.B.; Heo, S.K.; Park,
C.J.; Ryu, J.M.; Park, S.Y.; Kim, C.R. Xen on
ARM: System Virtualization Using Xen
Hypervisor for ARM-Based Secure Mobile
Phones. In Proceedings of the 2008 5th IEEE
Consumer Communications and Networking
Conference, 2008, pp. 257–261.

26 Stabellini, S.; Campbell, I. Xen on arm
cortex a15. Xen Summit North America
2012, 2012.

27 Martins, J.; Tavares, A.; Solieri, M.;
Bertogna, M.; Pinto, S. Bao: A Lightweight
Static Partitioning Hypervisor for Modern
Multi-Core Embedded Systems. In
Proceedings of the Workshop on Next
Generation Real-Time Embedded Systems
(NG-RES 2020); Bertogna, M.; Terraneo,
F., Eds.; Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik: Dagstuhl, Germany, 2020;
Vol. 77, OpenAccess Series in Informatics
(OASIcs), pp. 3:1–3:14.

28 Li, H.; Xu, X.; Ren, J.; Dong, Y. ACRN: A
Big Little Hypervisor for IoT Development.
In Proceedings of the Proceedings
of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual
Execution Environments; Association for
ComputingMachinery: New York, NY, USA,
2019; VEE 2019, p. 31–44.

29 Li, S.W.; Li, X.; Gu, R.; Nieh, J.; Hui, J.Z.
Formally Verified Memory Protection for a
Commodity Multiprocessor Hypervisor. In
Proceedings of the 30th USENIX Security
Symposium (USENIX Security 21). USENIX
Association, 2021, pp. 3953–3970.

30 Bellard, F. QEMU, a Fast and Portable
Dynamic Translator. In Proceedings of the
2005 USENIX Annual Technical Conference
(USENIX ATC 05); USENIX Association:
Anaheim, CA, 2005.

tii.ae

Technology Innovation Institute LLC
P.O. Box 9639
Abu Dhabi, UAE

