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The world is becoming 
increasingly more connected 
at a staggering rate with 
the rise of the Internet of 
Things (IoT), autonomous 
cars, drones, robots, and 
industrial control systems 
that are hooked up to 
the wireless network. The 
recent pandemic has also 
accelerated the trends in 
remote/ hybrid work and 
study. At the same pace, 
more malicious actors are 
discovering more innovative 
ways to penetrate devices 
and computer systems 
through various techniques 
like network attacks, 
software supply chain 
attacks, ransomware, side-
channel attacks, etc. 

In the recent past, the bulk of security 
breaches has involved compromising IT 
systems for ransomware attacks that steal 
or lock information and demand money 
from victims. The relatively new kind of 
attacks exploit hardware vulnerabilities in 
modern microprocessors, the popular ones 
being Spectre/ Meltdown1 which caused 
millions of computers to be vulnerable to 
rogue applications to read unauthorized 
application/ user data.

Of particular note are new software 
supply chain attacks2 that target software 
developers and suppliers by infecting 
legitimate software to distribute malware. 
The recent Solar Winds3 breach used a 
routine software update to slip malicious 
code into known software and then used 
it as a vehicle for a massive cyberattack. 
There have also been some reports of 
hardware supply chain attacks4 where 
someone or a company in the supply 
chain can install a malicious microchip on 
a circuit board used to build a computer 
and other network components. Using this 
chip, the attacker can eavesdrop on data 
or obtain remote access to the corporate 
infrastructure.

The early generation of IoT devices was 
rushed to market with only preliminary 
considerations of how they might be 
protected against hackers or securely 
updated against new threats. Many of 
these early devices are not updateable 
after the fact. Consequently, they are 
a popular target for hackers eager to 
create large-scale botnets for launching 

distributed denial of service attacks such 
as the Mirai botnet5 that compromised 
over 600,000 routers, digital video 
recorders, and cameras. This has given rise 
to a secondary industry of IoT security 
gateways designed to detect and block 
malicious activity outside poorly secured 
appliances like lighting controllers, 
crockpots, TV set-top boxes, and cameras.

Security researchers have identified how 
similar coordinated assaults on smart 
heaters, air conditioners, and other power-
intensive equipment could bring down 
the power grid.6  Indeed hackers remotely 
compromised the IT systems for managing 
the power grid in Ukraine in 2015, bringing 
the entire grid offline in some regions for 
several days.7 One medical device company 
recalled 500,000 pacemakers after 
discovering a significant vulnerability.8

Hence there is an utmost necessity to 
secure all our cyber assets (computers, 
phones, IoT, etc) and cyber-physical and 
autonomous assets (those that interact 
with the physical world and take actions 
without much human intervention, ex: self-
driving cars, drones, industrial robots, etc) in 
an end-to-end manner covering all aspects 
of the system stack from applications, 
operating system, hypervisor, firmware, 
SoC, peripherals, down to the motherboard.

Securing our digital  
future with Zero Trust

Introduction: 
The need for end-to-end  
system security
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1 	 “Meltdown and Spectre”. https://meltdownattack.com/.
2 	 “Software Supply Chain Attack”. https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/supply-chain-malware.
3	 “Solar Winds Breach”.  https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know.
4	  “Hardware Supply Chain Attack”. https://theintercept.com/2019/01/24/computer-supply-chain-attacks/.
5	  “The Mirai Botnet Explained: How IoT Devices Almost Brought down the Internet | CSO Online.” Accessed March 16, 2022.  

https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html.
6	 Greenberg, Andy. “Hacked Water Heaters Could Trigger Mass Blackouts Someday.” Wired. Accessed June 13, 2022.  

https://www.wired.com/story/water-heaters-power-grid-hack-blackout/.
7	 “Ukraine Power Grid Hack.” https://en.wikipedia.org/wiki/Ukraine_power_grid_hack
8	 Hern, “Hacking Risk Leads to Recall of 500,000 Pacemakers Due to Patient Death Fears.”



Security Vulnerabilities

Below is a list of common cyber-physical attacks that target 
autonomous cyber-physical systems exploiting their inherent 
flaws or vulnerabilities in the design, here are some example 
scenarios:

Fault Injection Attack

A drone delivery service is attempting to 
deliver high-value cargo to a customer. An 
attacker's objective is to hijack the drone 
and force it to land in another location to 
sell the cargo in the underground economy. 
Possible attack strategies include spoofing 
the sensors, jamming GPS or optical 
sensors, injecting fake visual location data, 
or a complete takeover using the control 
protocol. The data from successful attacks 
will help train machine-learning algorithms 
to ease future attacks.

Firmware Update Attack

New firmware updates and security 
bug fixes are distributed to computer 
systems via Firmware Over the Air (FOTA) 
mechanisms via the network. An attacker’s 
objective is to attempt to corrupt the 
firmware image or prevent the update from 
happening, so the system is never up-to-
date in terms of the latest firmware and is 
thereby vulnerable to attacks.

Code Reuse Attack

Code-reuse attacks are software exploits 
in which an attacker directs control flow 
through existing code with malicious 
intent. For example, return-oriented 
programming is an effective code-reuse 
attack in which short code sequences 
ending in a return instruction (return or ret 
is a pseudo-instruction that is expanded 
to jalr zero, 0(ra) for RISC-V architecture) 
are found within existing binaries and 
executed in arbitrary order by taking 
control of the stack and hijack the normal 
program flow to execute carefully crafted 
machine instructions. These techniques 
take advantage of software flaws, such as 
out-of-bound buffer writes or code pointer 
overwrites, to alter the control flow of the 
software run by the core.

Software Supply Chain Attack

In the past, enterprises would craft their 
applications from scratch. This was a 
time-consuming and slow process. Digital 
leaders like Google, Amazon, and Netflix 
managed to dominate their industries 
thanks to a more iterative and faster pace 
of development. These new practices 
took advantage of open-source software 
components as a starting point for 
adding new value. Over the last several 
years, attackers have discovered ways 
to compromise these software building 
blocks to attack high-value targets through 
software supply chain attacks. Software 
supply chain attacks have grown 300% in 
2021. 9 

Hardware Supply Chain Attack

Now, attackers are extending these same 
tactics into the hardware used to secure 
software. Both white-hat researchers and 
hackers have developed various tactics and 
tools.10 A new firmware-level compromise 
called MoonBounce can compromise 
systems at the hardware level that is not 
detectable by traditional OS security scans.11 
Lenovo recently released an emergency 
security update to prevent hardware 
attacks that could affect the boot sector 
on over 100 models.12  As a result, MITRE’s 
Common Attack Pattern Enumeration and 
Classification database added a specific 
category for vulnerabilities in 2020.13  A 
recent Ponemon Institute survey found that 
64% of enterprises were planning to take 
steps to improve security at the hardware 
level, and 85% consider the hardware 
and firmware security a high or very high 
priority.14    
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9 	 VentureBeat. “Report: Software Supply Chain Attacks Increased 300% in 2021,” January 27, 2022.  
https://venturebeat.com/2022/01/27/report-software-supply-chain-attacks-increased-300-in-2021/.

10 	 Tortuga Logic. “A History of Hardware Security and What It Means for Today’s Systems,” March 22, 2022. https://tortugalogic.com/history-of-hardware-security/.
11 	 “MoonBounce: The Dark Side of UEFI Firmware.” Accessed May 13, 2022. https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468/.
12 	  “Hackers Can Infect >100 Lenovo Models with Unremovable Malware. Are You Patched? | Ars Technica.” Accessed May 13, 2022.  

https://arstechnica.com/information-technology/2022/04/bugs-in-100-lenovo-models-fixed-to-prevent-unremovable-infections/.
13 	 Tortuga Logic. “Reducing Hardware Security Risk,” July 1, 2020. https://semiengineering.com/reducing-hardware-security-risk/.
14 	 “Intel Study: Secure Systems Start with Hardware,” https://download.intel.com/newsroom/2022/corporate/secure-systems-hardware-study.pdf



Security Challenges

For several decades system 
designers and attackers have 
been playing this cat-and-
mouse game: waiting for 
a new attack to manifest 
and then trying to find 
mitigation and release in 
the next product line or bug 
fixes patches (ex: microcode 
patches from Intel/ AMD), 
and it's a never-ending 
game. We need a radically 
new and comprehensive 

approach to secure cyber-
physical computing systems 
and protect against current 
and future cyber-physical 
attacks. It is important 
to develop new security 
approaches that consider 
the interaction among 
hardware, software, and 
communication systems 
so they can be hardened 
end-to-end. This includes 
creating a framework 

for understanding and 
defending against 
autonomous security 
risks across all types of 
infrastructure, including 
fleets of cars, automated 
warehouses, construction 
sites, farms, and smart cities.
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What is Zero Trust?

1	 Fail Safely and Securely: 
Ensure that error conditions don't leave 
secrets around. 

2.	 Complete Mediation:  
Check every single access to confirm 
legitimacy.

3.	 Rule of Least Privilege:  
Minimize any hardware agent's 
privileges and minimize privilege creep. 

4.	 Separation of Duty:  
Make agents have their own purpose 
on the designs. 

5.	 Least Common Mechanism:  
Separate out security functions from 
others. 

6.	 Secure the Weakest Link:  
Protect the design’s weakest part. 

7.	 Defense in Depth:  
Build multiple walls. 

8.	 Simplicity:  
Invent simpler architectures. 

9.	 Psychological Acceptability:  
Make security mechanisms easy to use 
and acceptable to customers.

Zero Trust is a term coined 
by Forrester Research 
in 2010 that refers to a 
proactive and pervasive 
approach to network security 
designed to minimize 
uncertainty. It shifts the 
paradigm from trust-based 
on physical connectivity 
or proximity to a new 
model that involves always 
authenticating and verifying 
every access. 

In this paper, we present how the above zero trust approach can be extended and applied to hardware and software design that 
starts with the assumption that breaches could or already have occurred at each level of the hardware/software systems stack. This 
mindset can help mitigate the impact of attacks that have not yet been discovered. 

Intel’s15 Zero Trust approach to architecting silicon is a great starting point for security researchers and engineers to appreciate and 
understand how and where can they apply these 9 principles for improving the trust and security of the systems and products they 
build.

Zero-trust security emerged as a 
recognition that traditional approaches 
to securing the perimeter of enterprises, 
governments, and services do not work 
well as we move towards distributed and 
decentralized architectures in the cloud.
 
The Zero Trust paradigm allows security 
teams to plan for the possibility that 
vulnerabilities may exist throughout a 
chain of interactions among multiple 
systems, such as across several cloud 
services, data processes, storage services, 
and networks. The fundamental concept 
is to never trust and always verify the 
provenance of each request. Another basic 
principle is to assume that a breach has 
already occurred, so it is essential to limit 
the blast radius of any breach. Figure 1 
summarises the various principles.

Keep security mechanism easy to use

Zero Trust
Architecture

Fail safely 
and securely 

Rule 
of least �privilege� 
(min. creep)

Complete 
mediation

Separation � 
of Duty � 

(sep. functions)

Simplicity: �Invent 
simpler �architectures

Secure �the  
weakest link

Defense in depth: � 
Build multiple walls

Separate Security 
functions from others

Figure 1: Zero Trust Principles Overview
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What is RISC-V?

The RISC-V (Reduced 
Instruction Set Computer 
version 5) architecture 
is a free and open ISA 
(instruction set architecture) 
that is quickly becoming 
the third most crucial 
architecture behind 
Intel and ARM. RISC-V 
architecture is governed by 
a non-profit organization 
called RISC-V International 
and it accelerates RISC-V 
adoption by working with 
the member community. 
Since the architecture is new 
and free from the legacy 
burden the possibilities to 
adapt to any applications/
use cases are enormous, and 
we can witness RISC-V being 
used from tiny IoT sensors to 
edge devices to autonomous 
robots to space satellites. 

RISC-V International develops the ISA 
specifications for RISC-V and has a 
dedicated security team made up of 
volunteers from various parts of the 
world, to identify security vulnerabilities, 
propose mitigation strategies and produce 
specifications for security features and 
enhancements. Table 1 summarizes the 
roadmap of some of the existing and 
upcoming RISC-V security features.

We at Technology Innovation Institute 
(TII)/ Secure Systems Research Center 
(SSRC) are contributing to development 
of security features such as Confidential 
Computing, Control Flow Integrity, etc. 
We are also chairing a Trusted Computing 
Group16, which performs research and 
defines specifications for supporting 
confidential computing for various device 
profiles including IoT, Edge, and Cloud.

Vulnerability Core Feature Threat Mitigation RISC-V Specification 
Approved?

Malicious programs accessing other 
programs memory 

PMP Memory access control policy for 
isolation among programs Yes

MMU Memory protection via multi-level 
page tables Yes

MPU Can be used on devices without 
MMU Yes

Rogue I/O devices accessing illegal 
memory

IOPMP Memory access control policy Yes

IOMMU Memory protection via multi-level 
page tables for I/O devices ETA ~Q4 2022

Malicious programs accessing the 
sensitive memory of application 
software

TEE
Providing a hardware-based 
isolated environment to keep 
sensitive data

Yes

Confidential Computing

Providing multiple hardware-
based isolated environments 
to keep various sensitive data’s 
confidentiality and integrity 
protected plus encryption of 
memory to prevent physical 
memory attacks

ETA ~Q4 2022

Malicious programs exploiting 
software defects, pointer, memory 
vulnerabilities to leak secrets

CHERI

Capabilities based mechanism 
for pointer protection, fine-
grained memory protection, 
and fine-grained software 
compartmentalization

TBD

Malicious programs performing 
control flow hijack via software 
buffer overflow, COP, JOP attacks

CFI Via shadow stack and new ISA for 
function call labels ETA ~Q4 2022

Timing, power and other side-
channel attacks to steal sensitive 
data

Side-channel Safety

Microarchitecture review and 
implementation that is side-channel 
safe. fence.t & sec.flush are 2 
instructions proposed for this

TBD

High level summary of existing and planned Security features inside RISC-V Processor Core

Table 1: Existing and planned Security features inside RISC-V Processor Core
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PMP = Physical Memory Protection
MMU = Memory Management Unit
IOPMP = IO PMP
IOMMU = IO MMU
TEE = Trusted Execution Environment
TZ = Trust Zone from ARM
Realms = Confidential Computing  
from ARM
CHERI = Capability Hardware  
Enhanced RISC Instructions
CFI = Control Flow Integrity
H-Extn = Hypervisor Extension
PQC = Post Quantum Crypto
COP = Call Oriented Programming
JOP = Jump Oriented Programming

16 	 “RISC-V Trusted Computing SIG.” https://lists.riscv.org/g/sig-trusted-computing



Applying Zero Trust to RISC-V Systems

TII/ SSRC security 
researchers along with 
our research partners 
have been exploring ways 
to systematically weave 
Zero Trust capabilities 
into every level of silicon 
hardware/ software design, 
by following the “Trust 
nobody” philosophy. Zero 
Trust requires the ability to 
(1) detect vulnerabilities 
when they occur (2) resist 
known attacks, (3) isolate 

the element that causes 
the vulnerability, (4) recover 
from the attack, and (5) 
reconfigure the system 
so that it can continue its 
mission without or despite a 
vulnerable component. 
We shall describe some 
of the key techniques we 
are currently working on, 
categorized into various 
levels of system stack:  
1) Platform level, 2) SoC 
level, 3) CPU level, and 4) 
Software level.
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1 Zero Trust at the Platform level

1a Component-to-Component Mutual Trust

The protocol running on the platform 
(initiator) challenges any new hardware 
component (responder) connected to the 
system. For example, if someone replaced 
a camera, GPS receiver, or motor in a drone, 
the platform would verify their authenticity 
using this protocol using public key 
cryptography certificates. 

The components mentioned above are 
typically active components that might 
have some compute capacity and key 
storage to actively participate in the above-
mentioned message exchange protocols. 
We are also actively looking to adapt these 
multi tenant host VM environments, to 
low-energy passive components such as 
low-power sensors that lack computing 
horsepower for performing cryptographic 
operations, storage, etc. 

Zero Trust principles used: 
Verify Explicitly, Assume 
Breach

Today’s approach to 
platform design assumes 
components (ex: GPS, motor 
controller, PCI devices, 
etc) on the platform/ 
motherboard by default 
to be trusted based on the 
physical connectivity and 
often messages arriving 
on a hardware bus are also 
assumed to be legitimate. 
This approach leaves behind 
serious vulnerabilities if 
malicious actors find ways 
to penetrate the hardware 
supply chain. 

One promising countermeasure is to adopt 
secure collaboration between components 
in hardware similar to how TLS and 
HTTPS secure web transactions, where 
components can mutually identify each 
other, authenticate each other, establish 
secure connections and measure the 
firmware. This could protect the intellectual 
property in the silicon industry and mitigate 
physical attacks and illegal firmware 
updates. 

We are exploring various approaches 
to establish secure sessions between 
various components on the platform and 
we found there are already two industry 
standards available to establish secure 
communication between two endpoints 
(say a platform and a component) such 
as the Distributed Management Task 
Force’s (DMTF) Security Protocol and Data 
Model17 (SPDM) specification and the 
PCI-SIG Integrity and Data Encryption18  
(IDE) specification to establish secure 
communication at physical buses or 
links, which we would like to leverage and 
optimize to support our component-to-
component mutual trust establishment. 
In this scheme, the platform does not 
communicate with any on-system 
components/ chips until it establishes 
trust as shown in Figure 2. This could allow 
system designers to securely integrate off-
the-shelf or custom components into their 
systems. 

Platform
(Initiator)

Component 
(Responder)

Request Certificate

Certificate

Challenge

Response

Request Measurement

Measurement

Keys

Mutual Authentication

Data exchange

Identification

Authentication

Measurement

Key Exchange

Secure Session

Figure 2: Two endpoints establish mutual authentication and encrypted communication
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17	 “Security Protocol and Data Model Specification.” https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.1.pdf
18	 “Integrity and Data Encryption.” https://pcisig.com/sites/default/files/files/PCIe%20Security%20Webinar_Aug%202020_PDF.pdf



1b Efficient Redundancy for Fault Tolerance

that uses only 2 redundant modules 
executing the same code in parallel 
and a voting aggregator to detect a 
potential malfunction or failure saves 
on power, size, weight, etc., but cannot 
recover from a fault. Some existing fault 
recovery mechanisms are

a	 Checkpointing with roll-back technique: 
instead of comparing outputs of each 
module at every instruction, it only 
takes periodic snapshots of the good 
state of execution, so whenever a 
fault has encountered the execution 
can roll-back to a recent snapshot. 
Implementing such a mechanism 
for real-time systems can be quite 
challenging and may even harm 
functionality; e.g., performing a roll-
back can create a delay that may cause 
drones to crash while recovering from 
the fault.

b	 Roll-forward technique19: allows both 
modules to continue executing their 
task speculatively, and power up 
temporally a third module that can 
judge which of the other two modules 
is faulty. Once the fault is detected, the 
faulty module would roll-forward to 
the state of the other module, thereby 
recovering from the fault.

We are exploring approaches to leveraging 
and optimizing some of the above 
techniques and also coming up with new 
schemes to meet the requirements for 
systems such as drones, having real-time 
constraints and resource constraints such 
as power, weight, battery capacity, etc. In 
order to minimize the overheads of DMR 
such as 1) additional latency caused by roll-
back, and 2) the need for a third temporary 
module, we are considering approaches, 
such as combining the roll-back and roll-
forward techniques together.

Zero Trust principles used: 
Fail Securely

As per the report 
from International 
Technology Roadmap for 
Semiconductors (ITRS), the 
reliability of  Integrated 
Circuits (IC) has become 
a key challenge owing to 
the technological issues 
posed by the shrinking 
process nodes, sensitivity 
to external influences such 
as radiation-related effects 
(radioactive decay or cosmic 
rays), high temperature, 
electromigration, process 
variation, transistor aging 
(the process of silicon 
transistors developing flaws 
over time as they are used, 

degrading performance and 
reliability, and eventually 
failing altogether), etc. 
Hence, building reliable 
and fault-tolerant systems 
that are immune to 
manufacturing defects and 
to transient errors is key to 
achieving Zero Trust.

Fault-tolerant system design techniques 
have been around for decades, for example 
in airplane, space, and medical industries, 
enabling a system to continue its intended 
operation, possibly at a reduced level, 
rather than failing completely, when some 
part of the system fails. 

Some popular fault-tolerant techniques:

1	 Triple Modular Redundancy (TMR) in 
which 3 redundant modules (SoCs on 
the platform) execute the same code 
in parallel and the result is votted by a 
majority-voting aggregator to produce 
a single output, and If any one of the 
three modules malfunctions or fails, 
the other two modules can correct the 
fault thereby continuing the intended 
operation without failing.  It comes at 
a cost of 3x power, size, weight, etc, 
which is not practical for autonomous 
robots such as drones for example, as 
its usable battery capacity determines 
the usefulness of the drone. 

2	 Dual Modular Redundancy (DMR) 
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17	   “Roll-forward recovery.” https://ieeexplore.ieee.org/document/494475



2 Zero Trust at the SoC level

2a Dynamic Hierarchical ML-based Hardware Security

•	 Sensors – provide information 
regarding the component at run-time; 
e.g., performance and power counters, 
reliability counters

•	 Local Control Unit – collects 
information from the sensors,  validates 
measurements with respect to the 
current state and detect any deviations, 
and take emergency actions upon any 
violations. The sensor sampling rate can 
be adjusted, for example, based on the 
speed of a drone, and the nature of the 
sampled signals.

•	 Global Control Unit – Analyses 
information received from all local 
control units, and executes system-
level policies and actions. As long as 
information retrieved from the local 
sensors agrees with the predicted 
global state, the system considers a 
normal mode of operation. If there 
is a disagreement with the predicted 
global state, it can decide to allow the 
operation to continue and to learn 
it as a new valid state, or assume an 
emergency situation and start the 
recovery mechanism. 

All these blocks are interconnected 
with each other via a dedicated bus 
for exchanging commands and data 
messages.

Zero Trust principles used: 
Fail Securely

With the pace at which 
cyberattacks are deployed, 
the software/ firmware 
ecosystem is well adapted 
to respond to security 
threats dynamically by the 
periodic/ on-demand release 
of software upgrades (e.g., 
the updates that we receive 
for iPhones, Android phones) 
for security mitigations. 
But on the hardware side, 
this flexibility is limited. 
Hardware is designed and 
once shipped is expected 
to last for 10 of years while 
continuously defending 
against security attacks, 
which is unrealistic hardware 
is usually static and 
unmodifiable (exceptions 
being microcode updates on 
X86 systems that have some 
capability to fix hardware 
security bugs). 

We propose a new mechanism by 
adding sensors and control units to each 
component of the SoC, and a global control 
unit with ML algorithms to 1) dynamically 
evaluate if a component is under attack 
and 2) mitigate the attack by changing 
the structure and/or operation mode of the 
system so that it could continue to function 
under the attack. 

As an analogy, the human central nervous 
system operates in a hierarchical nature, 
for example: when touching a hot object 
then an immediate autonomous response 
is generated to remove the hand from the 
hot object, and only later the information 
is processed in the brain to analyze the 
situation. Similarly, we use a hierarchical 
structure that allows fast, and efficient 
responses to immediate threats, and the 
use of more sophisticated algorithms for a 
deeper holistic analysis.

As described in Figure 3, the following are 
the building blocks for this approach

Figure 3: Global and Local Control units with sensors on the SoC
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2b Logic Locking

Zero Trust principles used: 
Assume Breach, Verify 
Explicitly, Fail Securely, 
Secure Weak Link

The globalization of 
integrated circuit (IC) supply 
chain and the emergence of 
threats, such as intellectual 
property (IP) piracy, reverse 
engineering, and hardware 
Trojans, have forced 
semiconductor companies 
to revisit the trust in the 
supply chain. Logic locking is 
emerging as a popular and 
effective countermeasure 
against these threats. 

Logic locking as described in Figure 4, is a 
technique for locking the description of a 
chip design (design netlist), which can only 
be unlocked with a unique chip-specific 
key. Specifically, the design is modified to 
add new inputs that expect a “logic locking 
key”, to be applied to unlock the original 
full chip functionality. This secret key must 
be loaded into non-volatile memory after 
the chip has been received post-fabrication 
by the designer/ company that designed 
the chips, as described in Figure 5. Without 
the proper key loaded into the chip, it's 
basically a non-functional chip. This makes 
it harder for a third party to clone the 
design or for a contract manufacturer to 
profit from making extra copies of the 
design. 
Logic locking can protect fabless chip 
design companies that outsource 
fabrication to third-party chip foundries. 
For example, an unscrupulous engineer 
or hacker that breaks into these systems 
might reverse engineer the chip blueprint or 
copy and pirate the chip or critical blocks. 
Another concern is that these individuals 
may also tamper with the chip design 
to inject stealthy circuitry to launch a 
malicious attack using a hardware trojan. A 
third possibility is a fab may produce extra 
copies to sell on the grey market. Logic 
locking ensures that only authorized users 
can activate chips. It can also make it more 
challenging to reverse engineer the chip 
to pirate the design or insert meaningful 
hardware trojans. 
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Existing logic locking approaches 
incur implementation costs, including 
increased area, power consumption, and 
performance. Owing to the overhead, 
it may be desirable to only apply logic 
locking to critical blocks in a targeted 
fashion rather than the entire design. For 
example, designers may apply logic locking 
to security-critical blocks or locations in the 
chip that would cripple chip functionality 
most effectively. 

Chip designers need to consider the 
security of the key across the entire 
lifecycle - design, activation, and operation 
of the protected chip. For example, 1) 
hackers may attempt to retrieve the key by 
analyzing the chip blueprint stolen from 
a fab or a working chip procured from the 
marketplace, or 2) an adversary might 
simulate the locked design netlist to prune 
away the incorrect keys and use machine 
learning techniques to hone these attacks, 
or 3) an adversary may also probe signals 
to find the secret key directly, which are 
practically infeasible due to the enormous 
time it takes to break the key brute force.

Logic locking, when implemented correctly, 
is a proactive and strong defense at chip 
designers’ disposal in mitigating chip 
supply chain vulnerabilities such as Trojans, 
IP piracy, and chip overbuilding. We have 
implemented a proof-of-concept for this 
defense in our SoC by locking several critical 
design blocks on the chip. We are also 
enhancing our logic locking tool with the 
following new capabilities - 1) the ability to 
choose the security-sensitive blocks to lock 
and how much to lock depending on the 
threat model and PPA (power, performance, 
area) targets of the project, and  2) 
creating chip specific keys by utilizing the 
on-chip PUF (physical unclonable function) 
to limit the impact of a leaked key.
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2c Root-of-Trust 2d Concolic Testing for Security Verification

We at TII/ SSRC are extending this RoT 
to support improved security or flexibility. 
We are connecting two components 1) 
TRNG (true random number generator) 
to generate random numbers and 2) 
PUF (physical unclonable function) to 
produce a unique device-bound identity 
to the OpenTitan RoT. We are exploring 
using the PUF to enable Zero-Touch key 
material provisioning by providing unique 
chip-specific identities, and further key 
materials could be derived from them. We 
are also working on a secure mailbox and 
a secure API that allows the host system 
to use OpenTitan’s trust domain to request 
runtime crypto services (e.g., signature 
verifications) and critical management 
operations required by zero trust practices. 
We are also integrating NIST-approved 
quantum-safe encryption algorithms such 
as Crystals-Dilithium, CRYSTALS-Kyber, etc., 
to strengthen the flows such as secure boot. 

We are exploring ways to support parallel 
and sequential executions and infer the 
security implications of clock cycles on 
hardware designs. One benefit of this 
approach is that it forms one concrete path 
at a time, so it does not suffer from the 
scalability issue of formal testing. 

As described in Figure 6, our concolic 
testing framework accepts as input 1) RTL 
(register transfer language) source code for 
hardware designs and 2) security properties 
extracted from threat model and security 
objectives and automatically produces test 
cases and test results. Based on the test 
results the engineer will be able to identify 
and rectify security vulnerabilities.

Let's take an example to put things in 
perspective:

Zero Trust principles used: 
Secure Weak Link, Defense in 
Depth, Separation of Duty

A hardware root of trust 
(RoT) provides a set of 
security properties that 
anchor the security of the 
SoC into the hardware and 
are fundamental to the 
overall security posture of 
the system. It is isolated 
from all other chip logic by 
design. 

Zero Trust principles used: 
Verify Explicitly, Assume 
Breach, Defense in Depth

Chip designers are 
increasingly building modern 
system-on-chip designs 
by leveraging various 
pre-verified hardware IPs 
(intellectual property - 
examples IP: CPU, GPU, 
memory controller, etc. 
available with source 
code) from third parties, 
to reduce design and 
verification costs and reduce 
time to market. However, 
the growing reliance on 
these third-party vendors 
increasingly affects the 
security and trustworthiness 
of these systems. For 
example, a vulnerability in 
an IP could be exploited to 
insert backdoor trojans or 
launch an attack. Various 
approaches are being 
explored to detect and 
inhibit SoC vulnerabilities 
systematically. 

It is often used to support secure system 
boot since it provides a fundamental 
mechanism for every connected or 
standalone device exposed to potential 
threats, upon which the whole security 
architecture is built. It is also responsible 
for storing and protecting confidential 
information and cryptographic keys, 
establishing a basic level of trust in the 
system. For example, it could check the 
authenticity and integrity of early-stage 
boot loaders using public key cryptography 
algorithms like Rivest-Shamir-Adleman 
(RSA).

Among available open-source RoTs such 
as OpenTitan20, Caliptra21, etc., we chose 
OpenTitan to adapt and customize for our 
system security. It is the first open-source 
silicon RoT, built with transparency, high-
quality design and verification, flexibility, 
and a high level of security.

Zero trust mechanisms in a hardware 
system must inherit their trust from the 
RoT domain. Various considerations must 
be addressed to strike the right balance 
between hardening this RoT and providing 
flexibility for new applications or encryption 
algorithms. 

One concern is that untrusted components 
could engage in various malicious activities 
such as denial-of-service, disruption of 
functionality, leaking sensitive information, 
reducing battery life, altering sensitive 
messages, etc., which could lead to 
catastrophic outcomes. 

Current industrial practices based on 
fuzzing and penetrated tests used to 
detect such vulnerabilities incur significant 
drawbacks, including needing an expert. 
Another approach that uses commercial 
functional verification frameworks is also 
being explored using simulation or formal 
analysis. However, simulation-based 
systems struggle to detect corner-case 
vulnerabilities, which an adversary can 
exploit. Formal tools struggle to support 
full-scale SoC since they suffer from state 
space explosion.

We are currently exploring a promising 
approach that leverages an efficient, 
transformative infrastructure based on 
concolic testing for detecting exploitable 
SoC security bugs and violations at the 
source code level. Concolic testing, a 
combination of “concrete” plus “symbolic,” 
is a semi-formal symbolic execution-based 
test generation methodology used to 
generate tests to cover a small fraction of 
corner cases and rare functional scenarios. 
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Asset Crypto keys in internal registers

Threat Leakage of secret asset i.e., unencrypted plain text can be retrieved by an attacker. 
This violates the confidentiality property of the secure assets of SoC design.

Trigger Condition Asynchronous reset applied to crypto engine

Security Objective Internal register values shall be cleared after any asynchronous reset

Inputs to Concolic Testing Engine:
Security Properties extracted from Threat Model & Security Objective + Assertions + RTL Design

Table 2: Input to Concolic Testing Engine

Security Weakness
Weaknesses in this category are related to system power, voltage, current, 
temperature, clocks, system state saving/restoring, and resets at the platform and 
SoC level

Violation Type Information leakage

Hardware CWE22 Category Power, Clock, Thermal, and Reset Concerns (CWE-120623)

Test Case Apply asynchronous reset and read contents of the target register where the key is 
stored. If the value read is previous content, then the bug is confirmed

Bug Description Registers are not cleared after asynchronous reset

RTL Assertion <<reg1>> r1 = 31’h0000;

Output from Concolic Testing Engine:  
Security Reports

Figure 6: RTL-level Concolic Testing Framework

22	   “Common Weakness Enumeration” https://cwe.mitre.org/
23	   “CWE-1206” https://cwe.mitre.org/data/definitions/1206.html
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2e Future-proofing against Quantum Computer Attacks

NIST has initiated a process of 
standardizing several post-quantum 
cryptographic (PQC)25 algorithms  that 
are proven to be resilient to new quantum 
attacks. As an example, CRYSTALS-
Dilithium26 is a digital signature scheme 
that is strongly secure under chosen 
message attacks based on the hardness of 
lattice problems, and not based on integer 
factoring problem which is susceptible to 
quantum computer attacks. The security 
notion means that an adversary having 
access to a signing oracle cannot produce 
a signature of a message whose signature 
he hasn't yet seen, nor produce a different 
signature of a message that he already saw 
signed.

We at TII/SSRC are working on enabling 
post-quantum secure boot on top of 
OpenTitan RoT. This includes modifying 
the boot flow and integrating a hardware 
accelerator for the CRYSTALS-Dilithium 
algorithm inside the RoT as shown in Figure 
7. Via a secure mailbox, we expose APIs for 
PQC signing, public-key encryption, etc., to 
the host system. In the future when NIST 
approves more PQC candidates we shall 
add support for them and share it back 
with the community.

Zero Trust principles used: 
Assume Breach, Secure Weak 
Link, Defense in Depth

Quantum computers are still 
in their early development. 
One concern is that more 
capable hardware will be 
able to take advantage of 
new quantum algorithms to 
crack popular cryptography 
techniques. For example, 
Shor’s algorithm could break 
integer factorization and 
discrete logarithm-based 
cryptography techniques 

like RSA and ECC. Grover’s 
algorithm imposes a 
similar threat to symmetric 
cryptography. For today's 
ubiquitous RSA encryption 
algorithm, a conventional 
computer would need about 
300 trillion years to crack a 
2,048-bit RSA digital key. But 
with Shor’s algorithm on a 
quantum computer powered 
by 4,099 qubits would need 
just 10 seconds24. A 1000 
logical qubit quantum 
computer would be a reality 
by end of this decade.

Figure 7: Integration of CRYSTALS-Dilithium accelerator inside OpenTitan RoT
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encryption,just%2010%20seconds%2C%20Wood%20said.
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26	 “CRYSTALS-Dilithium.” https://pq-crystals.org/dilithium/
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2f Hardware Shielding

One promising alternative we are exploring 
is to prevent the signals from being 
exposed to the hacker (shielding). This is 
similar to how modern systems handle 
faulty components by hiding faults from 
the real world. A fault becomes a bug only 
if the outside world sees it. Similarly, an 
internal vulnerability can only be exploited 
if seen by hackers. This approach involves 
developing a set of primitives that prevent 
the signals that may be susceptible to 
side-channel attacks from being exposed 
externally. 

The primitives need to strike the right 
balance between obfuscation and 
efficiency. For example, one primitive we 
have developed adds a random delay in 
processing, making it harder for an external 
observer to correlate between value and 
execution time.27 This can protect the 
system against timing attacks. Another 
primitive we developed adds extra power 
or other measurable signals to chip 
emissions during sensitive operations, 
making it harder for hackers to find 
EMF (electromagnetic field) signals that 
correlate with activity. This can reduce the 
risk that power traces could be used to 
recover sensitive information.

We are developing new and improved 
primitives that help protect against 
these classes of attacks and a new 
security management unit integrated 
into the hardware to run these primitives 
efficiently. This approach will 1) improve 
the protection of the system to manage 
known security attacks and 2) provide an 
infrastructure to manage future security 
attacks which are not known at the design 
or even implementation time.

Zero Trust principles used: 
Fail Securely, Defense in 
Depth

Typical hardware attacks 
may involve efforts to 
probe chip logic or perform 
side-channel analysis to 
look for secrets. Existing 
mitigation strategies 
include randomizing logic, 
adding locking mechanisms, 
masking logic, and adding 
redundant operations. 
Speculative execution 
attacks put a dangerous new 
twist on information leakage 

through microarchitectural 
side channels. Ordinarily, 
programmers can reason 
about leakage based on 
the program’s semantics 
and prevent said leakage 
by carefully writing the 
program to not pass secrets 
to covert channel-creating 
transmitter instructions, 
such as branches and loads. 
Speculative execution 
breaks this defense because 
a transmitter might miss-
speculatively execute with 
a secret operand even if it 
can never execute with said 
operand in valid executions.
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3 Zero Trust at Processor (RISC-V) Level

3a Deep-Learning based Control Flow Integrity

Zero Trust principles used: 
Verify Explicitly, Defense 
in Depth, Simplicity, Fail 
Securely

Today, a lot of software is 
written in memory-unsafe 
languages, such as C and 
C++, which introduces 
memory corruption bugs. 
This makes software 
vulnerable to attack since 
attackers exploit these 
bugs to make the software 
misbehave. Modern 
Operating Systems (OSs) 
and microprocessors are 
equipped with security 
mechanisms to protect 
against some classes of 
attacks. However, these 
mechanisms cannot defend 
against all attack classes. 
In particular, Code Reuse 
Attacks (CRA), which re-
uses pre-existing software 
for malicious purposes, is 
an important threat that is 
difficult to protect against.

Computer security exploits like Return-
Oriented Programming (ROP)28 and Jump-
Oriented Programming (JOP) hijack the 
normal program flow to execute carefully 
crafted machine instructions. These 
techniques take advantage of software 
flaws, such as out-of-bound buffer writes or 
code pointer overwrites, to alter the control 
flow of the software run by the core. 

Control-Flow Integrity29 (CFI) detects this 
malicious code from redirecting normal 
program flow and helps mitigate it.  CFI 
protects both the forward edge and the 
backward edge of the program control flow. 

•	 Forward edge protection: Carefully 
crafted gadgets could be introduced 
to alter indirect branch targets in the 
victim code, for which landing pads or 
labels act as a mitigation technique 
that restricts indirect branch targets to 
limited addresses that are pre-labeled 
for forward edge integrity protection. 

•	 Backward edge protection: Buffer 
overflow attack or code injection attack 
could corrupt the call stack thereby 
causing the victim code to return to 
invalid addresses, for which a shadow 
call stack is a popular mitigation 
mechanism for backward edge integrity 
protection.
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28	 “Return Oriented Programming” https://en.wikipedia.org/wiki/Return-oriented_programming
29	 “A Survey of Hardware-based Control Flow Integrity” https://arxiv.org/ftp/arxiv/papers/1706/1706.07257.pdf

Technique Forward Edge Backward 
Edge

Memory 
Overhead

Runtime 
Overhead

Architectural 
Modifications

Code Pointer 
Integrity

Probabilistic Probabilistic Minor

Acceptable 
(for only code 
pointers)

Major 
(requires 
cryptographic 
accelerator)

Memory Tagging Probabilistic Probabilistic Noticeable Minor

Major
(requires tag 
cache)

Shadow Stack + 
Landing pads

Fine grained Total Minor Minor

Modest 
(requires ISA 
and MMU 
changes)

Comparison of some popular CFI techniques available

30	 “Hardware CFI Techniques”  
https://docs.google.com/document/d/1QrqfWbEuY3X8yPll-udMLo0YCLPxWZC2wsw2IJ_bohs/edit

Table 4: Popular and existing CFI mechanisms 30  



RISC-V security community recently has 
recommended control-flow integrity 
support using shadow stacks and landing 
pads due to its low memory, runtime 
overheads with modest architectural 
extensions to the CPU (ISA extensions and 
compiler adaptations). 

We are currently exploring to enhance 
this landscape further with a promising 
approach with deep learning as described 
in Figure 8, where control-flow related 
signals and microarchitectural (uArch) 
events from the RISC-V Core, data from 
sensors (power and performance counters) 
are extracted, and exported to a train 
a neural hardware monitor to detect 
malicious control flow patterns. Later on 
the actual target device, the neural monitor 
performs inferencing to detect faults 
and report to the Core, for the handling 
of control flow violations. We propose to 
redesign the RISC-V CPU decoder, the 
control pipeline, potential ISA extensions, 
and the compiler toolchain extensions. 

Figure 8: ML-based Control Flow Integrity Architecture
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3b Hypervisor Support for Isolation

The RISC-V specification has 4 privilege 
modes 1) M-mode is the highest privilege 
mode where trusted firmware runs, 2) 
new HS-mode which is introduced to 
support a hypervisor, 3) S-mode to host 
an operating system and 4) U-mode 
for user/ applications. With hypervisor 
extension31 the supervisor mode is modified 
to a hypervisor-extended supervisor 
mode (HS-mode), which is orthogonal to 
the new virtual supervisor mode (VS-
mode) and virtual user mode (VU-mode), 
and therefore can easily accommodate 
different hypervisor architectures. The 
RISC-V security committee has ratified 
the hypervisor extensions specification 
1.0 version and we have implemented 
the feature on a RISC-V CVA632  CPU and 
contributed it back to OpenHW Group 
for anyone to download and use. We are 
also actively contributing to developing 
the specifications for new features 
such as the RISC-V Advanced Interrupt 
Architecture (AIA) and RISC-V I/O Memory 
Management Unit (IOMMU).

Zero Trust principles used: 
Least Privilege, Separation of 
Duty, Defense in Depth

Virtualization is a technique 
that offers temporal 
and spatial isolation 
among various processes/ 
applications by using a 
software layer beneath the 
operating system, called a 
hypervisor. The hypervisor 
allows hosting one or more 
Virtual Machines (VMs) 
on the same platform. 
This approach improves 
security by making it easier 
to standardize application 
and OS code and enforcing 
isolation across apps and 
their data. This also makes it 
possible to efficiently share 
the underlying hardware 
to improve utilization 
and enhance software 
modularity and flexibility. 

Virtualization technology plays a crucial 
role in several aspects of the zero-trust 
vision, such as 1) the rule of least privilege, 
2) separation of duty and 3) defense 
in depth. A new privileged hypervisor 
mode for RISC-V enables the separation 
and segregation of security-critical 
tasks from non-critical ones to simplify 
implementing the rule of least privilege. 
It also makes it easier to decompose and 
compartmentalize different subsystems in 
specific virtual machines to help enforce 
separation of duty. It also adds a new layer 
of defense for the overall defense-in-depth 
strategy.

In Figure 9, we describe an overview of 
how legacy software architecture can be 
modularized with hypervisor capability, 
where each of the applications could 
be isolated from each other and the 
underlying hardware for security and 
reliability. For example, in a drone usecase 
let's say the networking proxy has crashed 
due to some fault injection attack, it will be 
contained within the networking VM and 
will not bring down the whole system, and 
a restart of the networking VM alone could 
fix the problem. The drone could be offline 
and hovering for a period of time until the 
network connection is restored again.

Figure 9: Hypervisor Isolation Architecture
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31	 “RISC-V Hypervisor Extensions” https://lists.riscv.org/g/tech-privileged/topic/80346318
32	 “RISC-V CVA6 CPU” https://github.com/openhwgroup/cva6
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3c Capabilities-based Hardware Architecture (CHERI)

The industry has started implementing 
CHERI on research platforms, such as 
ARM’s Morello program. The RISC-V 
security committee has newly created a 
CHERI special interest group to collaborate 
with security experts to analyze and 
explore possibilities of standardizing CHERI 
ISA into the RISC-V ISA.

We are exploring ways of combining 
1) hardware virtualization, 2) CHERI 
architecture, 3) TEE (trusted execution 
environment), and 4) microkernels to 
balance tradeoffs in performance, power, 
code size, security, and programming 
complexity by utilizing the best from each 
architecture for improving RISC-V security 
even further. 

Zero Trust principles used: 
Least Privilege, Separation 
of Duty, Defense in Depth, 
Complete Mediation, Least 
Common Mechanism, 
Secure the Weakest Link 

CHERI (Capability 
Hardware Enhanced RISC 
Instructions)33 extends 
conventional hardware 
Instruction-Set Architectures 
(ISAs) with new architectural 
features to enable fine-
grained memory protection 
and highly scalable software 
compartmentalization. 
The CHERI memory-
protection features allow 
historically memory-unsafe 
programming languages 
such as C and C++ to 
be adapted to provide 
strong, compatible, and 

efficient protection against 
many currently widely 
exploited vulnerabilities. 
The CHERI scalable 
compartmentalization 
features enable the fine-
grained decomposition 
of operating-system (OS) 
and application code, to 
limit the effects of security 
vulnerabilities in ways that 
are not supported by current 
architectures.

CHERI has the potential to radically change 
the way we build security on processors in 
the future. It automatically enforces several 
Zero Trust principles at the hardware level, 
including complete mediation, rule of 
least privilege, separation of duty, least 
common mechanism, secure the weakest 
link, and defense-in-depth. It could even 
defend against control flow attacks such as 
ROP/ JOP attacks that we had discussed in 
chapter 3.a., and hence some of the other 
techniques could become redundant with 
CHERI.
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4 Zero Trust at the Software level
4a Confidential Computing 

computation in a hardware-
based or virtualized Trusted 
Execution Environment 
(TEE). This protects data 
confidentiality, data 
integrity, and code integrity.

of enclaves, which can only support 13 
enclaves. Similarly, the enclave number of 
Sanctum35 is also restricted by the number 
of isolated DRAM regions. TIMBER-V36  
extends the RISC-V ISA to run an unlimited 
number of enclaves, but it incurs non-trivial 
overhead (25.2% on average) and does not 
consider memory integrity protection.

Penglai proposes new hardware extensions 
like Mountable Merkle Tree and Guarded 
Page Tables to achieve scalable protection 
(up to 1000 enclaves). 

We at TII/ SSRC have collaborated 
with the RISC-V.org security horizontal 
committee to form a Trusted Computing 
Group to focus specifically on the problem 
of enabling confidential computing37  on 
RISC-V platforms. We analyzed the threat 
model38 and are in the process of defining 
a scalable and compatible confidential 
computing model. Initial proposals as 
described in Figure 11, prescribe a software-
based architecture without any RISC-V 
instruction set extensions and following 
industry standard attestation protocols 
such as Internet Engineering Task Force 
(IETF) Remote ATtestation ProcedureS 
(RATS)39 or Trusted Computing Group 
(TCG) DICE40 attestation architecture. After 
performance evaluation, we would consider 
adding new ISA extensions and registers 
for this feature.

Zero Trust principles used: 
Least Privilege, Separation 
of Duty, Defense in Depth, 
Secure Weak Link

Confidential computing can protect the 
security of data, the integrity of the 
data, and the code that processes the 
data, to ensure apps perform the correct 
computation. All three elements of data 
confidentiality, data integrity, and code 
integrity can help dramatically simplify the 
creation of zero-trust architectures, without 
any uncertainty from operating systems, 
hypervisors, or other applications.

The vulnerability of data-in-use has gotten 
the attention of attackers who now have 
been targeting data, including high-profile 
memory scraping, such as the Target 
breach in 2013, and CPU-side-channel 
attacks. In addition, the triton attack in 
2017 and the Ukraine power grid attack 
in 2015 are only two of several high-
profile attacks on data in use involving 
malware injection. The protection of 
data and applications during execution is 
increasingly important and must be part of 
the overall defense strategy.

This is why we need Confidential 
Computing.

Traditionally higher privileged OS/ 
Hypervisors with their right to manage 
resources also have full access to 
application memory. As a result, any attack 
on OS/ Hypervisor will open a doorway 
to application data. So the industry 
was focussing on hardening the OS/ 

Data in all computer 
systems can be in 
transit (networking), at 
rest (storage), or in use 
(compute). Confidential 
Computing protects data 
in use by performing the 

Hypervisors. With confidential computing, 
we would like to change that paradigm, 
where the OS/ Hypervisors are only resource 
managers and are denied access to 
application memory. Now the application 
only needs to trust the hardware not OS/ 
Hypervisors thereby shrinking the TCB 
(Trusted Computing Base).

Intel demonstrated the first practical, 
confidential computing architecture with 
the Intel SGX and Intel TDX architectures. 
Arm followed with their ARM Realms 
technology built on top of prior ARM 
TrustZone technology and virtualization 
technology. AMD also offers a competing 
Confidential VM technology.

There are several recent research 
contributions to RISC-V such as Keystone 
which implements enclave memory 
isolation by leveraging the PMP (Physical 
Memory Protection) mechanism of RISC-V, 
which includes a set of paired registers to 
indicate physical memory regions as well 
as their access permissions. However, the 
number of enclaves in Keystone is restricted 
by the number of PMP regions (up to 16). 
In order to defend against physical attacks, 
Keystone leverages on-chip computing, 
which is costly due to the restricted on-chip 
RAM. CURE34  adopts enclave ID-based 
access control for customizable enclaves. 
It utilizes a hardware arbiter to record 
contiguous physical memory regions 

Figure 10: Data protection at rest, in transit and in use

Data at rest

Encrypt unactive data when stored in blob 
storage, database, etc.

Existing encryption Confidential computing

Data in transit

Encrypt data that is flowing between 
untrusted public or private networks

Data in use

Protect/encrypt data that is in use, while in 
RAM, and during computation
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34	 “CURE: A Security Architecture with CUstomizable and Resilient Enclaves” https://www.usenix.org/system/files/sec21summer_bahmani.pdf
35	 “Sanctum Secure Processor” https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
36	 “TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V”  

https://www.ndss-symposium.org/ndss-paper/timber-v-tag-isolated-memory-bringing-fine-grained-enclaves-to-risc-v/
37	 “RISC-V Confidential Computing Overview” https://docs.google.com/presentation/d/1D6O9VopMXBrPmwZW-IKnXRrwJcVnXlU6ZC_Zkf9qh5E/edit#slide=id.p
38	 “RISC-V Confidential Computing Threat Model” https://docs.google.com/document/d/1TXiuy4ac3hQmEKvtTtM5aFVHLnNKCrYxeRZFYPRq2Xw/edit#heading=h.9yggln8khyd0
39	 “Remote ATtestation ProcedureS” https://datatracker.ietf.org/wg/rats/about/
40	 “DICE Attestation Architecture” https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf



Internet-of-Things (IoT) special case: IoT 
devices such as SIM cards, cameras, drones, 
smart homes, etc, are resource constrained 
in terms of features (example: lack of 
paged virtual memory/ MMU, security 
privilege rings such as supervisor mode, 
etc.) power, thermals, battery capacity, 
weight, etc., which brings significant 
challenges to implementing/ enhancing 
system security. Protection of data at the 
source of creation, which are these IoT 
devices, is gaining importance nowadays. 
We are exploring new and innovative ways 
to architect a lightweight implementation 
of confidential computing for the IoT class 
of devices, produce an IoT confidential 
computing specification with the 
community and standardize it at RISC-V 
International.
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4b Capabilities-based Software Architecture (CHERI)

Zero Trust principles used: 
Least Privilege, Separation 
of Duty, Defense in Depth, 
Complete Mediation, Least 
Common Mechanism, 
Secure the Weakest Link

As previously mentioned, 
efforts like CHERI are 
exploring ways to implement 
better fine-grained security 
controls at the hardware 
level. Software-based 
capabilities complement 
these to enhance zero-
trust architectures 
using fine-grained 
compartmentalization at 
the OS level. This approach 
needs to consider minimizing 
the impact and maximizing 
control across capabilities in 
middleware and OS libraries. 

For decades, designers have used 
software capabilities to implement 
fine-grained security controls in 
microkernels. Now researchers are 
exploring ways to retrofit existing 
software stacks to leverage CHERI, 
for example, 1) CheriRTOS41  provides 
efficient and scalable task isolation, fast 
and secure inter-task communication, 
fine-grained memory safety, and real-
time guarantees, using CHERI hardware 
capabilities as the sole protection 
mechanism in embedded systems, 2) 
CAP-VMs42  implements isolation and 
sharing at a finer granularity using 
CHERI hardware capabilities.

We are exploring ways to combine 
hardware capabilities like CHERI and 
advanced software techniques to 
compartmentalize software stacks at 
multiple levels better. We believe this 
will make configuring and enforcing 
different security policies/ guarantees 
more efficient. 
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41	 Xia et al., “CheriRTOS.” https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201810-iccd2018-cheri-rtos.pdf
42	 “CAP-VM.” https://www.usenix.org/system/files/osdi22-sartakov.pdf



A More Secure Future

TII/ SSRC and its research partners 
for the next 2-3 years would perform 
research and development on the 
security areas as described in this 
whitepaper. We are contributing to 
RISC-V International, OpenHW.org, and 
confidentialcomputing.io organizations, 
to collaboratively advance RISC-V 
system security and incorporating these 
technologies into our research SoC 
named “Al Saqr” to enhance the security 
posture for autonomous cyber-physical 
systems, for example, drones systems. 
The deliverables such as RISC-V CPU ISA 
extensions, design, and code shall be 
made available as open source so that 
the rest of the security community shall 
reap benefits from our work.

Please reach out if you would like to 
partner with us on this journey.

For many decades, 
Security was considered 
an afterthought. With the 
regular onslaught of cyber 
attacks on our networks 
and systems and their 
consequences on data 
privacy leading to financial 
losses, now security has 
taken the driver’s seat in the 
industry. The cat-and-mouse 
game between system 
designers and attackers: 
waiting for a new attack to 
manifest and then trying to 
find mitigation, is a never-
ending game, and so system 
designers need to take two 
steps forward to retain an 
advantage over attackers. 
Several leading companies 
including TII are adopting 
a security-first mindset 
and investing in Zero Trust 
research to secure our digital 
future in the years to come.

The foundation for system security starts 
with hardware, as software alone cannot 
defend against all threats. The root-of-
trust is a key building block that provides 
an anchor point in the hardware to build 
levels of security and trust. The adoption 
of quantum-resistant cryptography 
and incorporation into the secure boot 
and other features are essential to 
data privacy and security. Confidential 
Computing designed for cloud security 
is now gaining momentum in the edge/ 
IoT market segment as well and has its 
own challenges to deal with due to the 
resource-constrained nature of these 
devices. Leveraging the power of deep 
learning to harden security features such 
as control flow integrity and anomaly 
detection is also a growing area of 
research. CHERI is another promising 
capability that in the next 5 years, has 
the potential to hit the mainstream 
and even make several other security 
features redundant.
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