
tii.ae

Secure Systems
Research Center

Zero Trust Secure RISC-V System

2

Innovation
for a better
world

03

05	 Introduction:
The need for end-to-end
system security

06	 Security Vulnerabilities
08	 Security Challenges
10	 What is Zero Trust?
12	 What is RISC-V?
14	 Applying Zero Trust to

RISC-V Systems

16	 1 Zero Trust at the Platform
level

16	 1a Component-to-
Component Mutual Trust

18	 1b Efficient Redundancy for
Fault Tolerance

20	 2 Zero Trust at the SoC level
20	 2a	 Dynamic Hierarchical

ML-based Hardware
Security

22	 2b Logic Locking
26	 2c Root-of-Trust
26	 2d Concolic Testing for

Security Verification
30	 2e Future-proofing against

Quantum Computer Attacks
32	 2f Hardware Shielding

34	 3 Zero Trust at Processor
(RISC-V) Level

34	 3a Deep-Learning based
Control Flow Integrity

38	 3b Hypervisor Support for
Isolation

40	 3c Capabilities-based
Hardware Architecture
(CHERI)

42	 4 Zero Trust at the Software
level

42	 4a Confidential Computing
46	 4b Capabilities-based

Software Architecture
(CHERI)

48	 A More Secure Future

Contents

The world is becoming
increasingly more connected
at a staggering rate with
the rise of the Internet of
Things (IoT), autonomous
cars, drones, robots, and
industrial control systems
that are hooked up to
the wireless network. The
recent pandemic has also
accelerated the trends in
remote/ hybrid work and
study. At the same pace,
more malicious actors are
discovering more innovative
ways to penetrate devices
and computer systems
through various techniques
like network attacks,
software supply chain
attacks, ransomware, side-
channel attacks, etc.

In the recent past, the bulk of security
breaches has involved compromising IT
systems for ransomware attacks that steal
or lock information and demand money
from victims. The relatively new kind of
attacks exploit hardware vulnerabilities in
modern microprocessors, the popular ones
being Spectre/ Meltdown1 which caused
millions of computers to be vulnerable to
rogue applications to read unauthorized
application/ user data.

Of particular note are new software
supply chain attacks2 that target software
developers and suppliers by infecting
legitimate software to distribute malware.
The recent Solar Winds3 breach used a
routine software update to slip malicious
code into known software and then used
it as a vehicle for a massive cyberattack.
There have also been some reports of
hardware supply chain attacks4 where
someone or a company in the supply
chain can install a malicious microchip on
a circuit board used to build a computer
and other network components. Using this
chip, the attacker can eavesdrop on data
or obtain remote access to the corporate
infrastructure.

The early generation of IoT devices was
rushed to market with only preliminary
considerations of how they might be
protected against hackers or securely
updated against new threats. Many of
these early devices are not updateable
after the fact. Consequently, they are
a popular target for hackers eager to
create large-scale botnets for launching

distributed denial of service attacks such
as the Mirai botnet5 that compromised
over 600,000 routers, digital video
recorders, and cameras. This has given rise
to a secondary industry of IoT security
gateways designed to detect and block
malicious activity outside poorly secured
appliances like lighting controllers,
crockpots, TV set-top boxes, and cameras.

Security researchers have identified how
similar coordinated assaults on smart
heaters, air conditioners, and other power-
intensive equipment could bring down
the power grid.6 Indeed hackers remotely
compromised the IT systems for managing
the power grid in Ukraine in 2015, bringing
the entire grid offline in some regions for
several days.7 One medical device company
recalled 500,000 pacemakers after
discovering a significant vulnerability.8

Hence there is an utmost necessity to
secure all our cyber assets (computers,
phones, IoT, etc) and cyber-physical and
autonomous assets (those that interact
with the physical world and take actions
without much human intervention, ex: self-
driving cars, drones, industrial robots, etc) in
an end-to-end manner covering all aspects
of the system stack from applications,
operating system, hypervisor, firmware,
SoC, peripherals, down to the motherboard.

Securing our digital
future with Zero Trust

Introduction:
The need for end-to-end
system security

05

Zero Trust Secure RISC-V System

TII Technology Innovation Institute04

1 	 “Meltdown and Spectre”. https://meltdownattack.com/.
2 	 “Software Supply Chain Attack”. https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/supply-chain-malware.
3	 “Solar Winds Breach”. https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know.
4	 “Hardware Supply Chain Attack”. https://theintercept.com/2019/01/24/computer-supply-chain-attacks/.
5	 “The Mirai Botnet Explained: How IoT Devices Almost Brought down the Internet | CSO Online.” Accessed March 16, 2022.

https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html.
6	 Greenberg, Andy. “Hacked Water Heaters Could Trigger Mass Blackouts Someday.” Wired. Accessed June 13, 2022.

https://www.wired.com/story/water-heaters-power-grid-hack-blackout/.
7	 “Ukraine Power Grid Hack.” https://en.wikipedia.org/wiki/Ukraine_power_grid_hack
8	 Hern, “Hacking Risk Leads to Recall of 500,000 Pacemakers Due to Patient Death Fears.”

Security Vulnerabilities

Below is a list of common cyber-physical attacks that target
autonomous cyber-physical systems exploiting their inherent
flaws or vulnerabilities in the design, here are some example
scenarios:

Fault Injection Attack

A drone delivery service is attempting to
deliver high-value cargo to a customer. An
attacker's objective is to hijack the drone
and force it to land in another location to
sell the cargo in the underground economy.
Possible attack strategies include spoofing
the sensors, jamming GPS or optical
sensors, injecting fake visual location data,
or a complete takeover using the control
protocol. The data from successful attacks
will help train machine-learning algorithms
to ease future attacks.

Firmware Update Attack

New firmware updates and security
bug fixes are distributed to computer
systems via Firmware Over the Air (FOTA)
mechanisms via the network. An attacker’s
objective is to attempt to corrupt the
firmware image or prevent the update from
happening, so the system is never up-to-
date in terms of the latest firmware and is
thereby vulnerable to attacks.

Code Reuse Attack

Code-reuse attacks are software exploits
in which an attacker directs control flow
through existing code with malicious
intent. For example, return-oriented
programming is an effective code-reuse
attack in which short code sequences
ending in a return instruction (return or ret
is a pseudo-instruction that is expanded
to jalr zero, 0(ra) for RISC-V architecture)
are found within existing binaries and
executed in arbitrary order by taking
control of the stack and hijack the normal
program flow to execute carefully crafted
machine instructions. These techniques
take advantage of software flaws, such as
out-of-bound buffer writes or code pointer
overwrites, to alter the control flow of the
software run by the core.

Software Supply Chain Attack

In the past, enterprises would craft their
applications from scratch. This was a
time-consuming and slow process. Digital
leaders like Google, Amazon, and Netflix
managed to dominate their industries
thanks to a more iterative and faster pace
of development. These new practices
took advantage of open-source software
components as a starting point for
adding new value. Over the last several
years, attackers have discovered ways
to compromise these software building
blocks to attack high-value targets through
software supply chain attacks. Software
supply chain attacks have grown 300% in
2021. 9

Hardware Supply Chain Attack

Now, attackers are extending these same
tactics into the hardware used to secure
software. Both white-hat researchers and
hackers have developed various tactics and
tools.10 A new firmware-level compromise
called MoonBounce can compromise
systems at the hardware level that is not
detectable by traditional OS security scans.11
Lenovo recently released an emergency
security update to prevent hardware
attacks that could affect the boot sector
on over 100 models.12 As a result, MITRE’s
Common Attack Pattern Enumeration and
Classification database added a specific
category for vulnerabilities in 2020.13 A
recent Ponemon Institute survey found that
64% of enterprises were planning to take
steps to improve security at the hardware
level, and 85% consider the hardware
and firmware security a high or very high
priority.14

07

Zero Trust Secure RISC-V System

TII Technology Innovation Institute06

9 	 VentureBeat. “Report: Software Supply Chain Attacks Increased 300% in 2021,” January 27, 2022.
https://venturebeat.com/2022/01/27/report-software-supply-chain-attacks-increased-300-in-2021/.

10 	 Tortuga Logic. “A History of Hardware Security and What It Means for Today’s Systems,” March 22, 2022. https://tortugalogic.com/history-of-hardware-security/.
11 	 “MoonBounce: The Dark Side of UEFI Firmware.” Accessed May 13, 2022. https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468/.
12 	 “Hackers Can Infect >100 Lenovo Models with Unremovable Malware. Are You Patched? | Ars Technica.” Accessed May 13, 2022.

https://arstechnica.com/information-technology/2022/04/bugs-in-100-lenovo-models-fixed-to-prevent-unremovable-infections/.
13 	 Tortuga Logic. “Reducing Hardware Security Risk,” July 1, 2020. https://semiengineering.com/reducing-hardware-security-risk/.
14 	 “Intel Study: Secure Systems Start with Hardware,” https://download.intel.com/newsroom/2022/corporate/secure-systems-hardware-study.pdf

Security Challenges

For several decades system
designers and attackers have
been playing this cat-and-
mouse game: waiting for
a new attack to manifest
and then trying to find
mitigation and release in
the next product line or bug
fixes patches (ex: microcode
patches from Intel/ AMD),
and it's a never-ending
game. We need a radically
new and comprehensive

approach to secure cyber-
physical computing systems
and protect against current
and future cyber-physical
attacks. It is important
to develop new security
approaches that consider
the interaction among
hardware, software, and
communication systems
so they can be hardened
end-to-end. This includes
creating a framework

for understanding and
defending against
autonomous security
risks across all types of
infrastructure, including
fleets of cars, automated
warehouses, construction
sites, farms, and smart cities.

09

Zero Trust Secure RISC-V System

TII Technology Innovation Institute08

What is Zero Trust?

1	 Fail Safely and Securely:
Ensure that error conditions don't leave
secrets around.

2.	 Complete Mediation:
Check every single access to confirm
legitimacy.

3.	 Rule of Least Privilege:
Minimize any hardware agent's
privileges and minimize privilege creep.

4.	 Separation of Duty:
Make agents have their own purpose
on the designs.

5.	 Least Common Mechanism:
Separate out security functions from
others.

6.	 Secure the Weakest Link:
Protect the design’s weakest part.

7.	 Defense in Depth:
Build multiple walls.

8.	 Simplicity:
Invent simpler architectures.

9.	 Psychological Acceptability:
Make security mechanisms easy to use
and acceptable to customers.

Zero Trust is a term coined
by Forrester Research
in 2010 that refers to a
proactive and pervasive
approach to network security
designed to minimize
uncertainty. It shifts the
paradigm from trust-based
on physical connectivity
or proximity to a new
model that involves always
authenticating and verifying
every access.

In this paper, we present how the above zero trust approach can be extended and applied to hardware and software design that
starts with the assumption that breaches could or already have occurred at each level of the hardware/software systems stack. This
mindset can help mitigate the impact of attacks that have not yet been discovered.

Intel’s15 Zero Trust approach to architecting silicon is a great starting point for security researchers and engineers to appreciate and
understand how and where can they apply these 9 principles for improving the trust and security of the systems and products they
build.

Zero-trust security emerged as a
recognition that traditional approaches
to securing the perimeter of enterprises,
governments, and services do not work
well as we move towards distributed and
decentralized architectures in the cloud.

The Zero Trust paradigm allows security
teams to plan for the possibility that
vulnerabilities may exist throughout a
chain of interactions among multiple
systems, such as across several cloud
services, data processes, storage services,
and networks. The fundamental concept
is to never trust and always verify the
provenance of each request. Another basic
principle is to assume that a breach has
already occurred, so it is essential to limit
the blast radius of any breach. Figure 1
summarises the various principles.

Keep security mechanism easy to use

Zero Trust
Architecture

Fail safely
and securely

Rule
of least �privilege�
(min. creep)

Complete
mediation

Separation �
of Duty �

(sep. functions)

Simplicity: �Invent
simpler �architectures

Secure �the
weakest link

Defense in depth: �
Build multiple walls

Separate Security
functions from others

Figure 1: Zero Trust Principles Overview

11

Zero Trust Secure RISC-V System

TII Technology Innovation Institute10

15 	 “A Zero Trust Approach to Architecting Silicon.”
https://www.intel.com/content/www/us/en/newsroom/opinion/zero-trust-approach-architecting-silicon.html#gs.3nfbi8

What is RISC-V?

The RISC-V (Reduced
Instruction Set Computer
version 5) architecture
is a free and open ISA
(instruction set architecture)
that is quickly becoming
the third most crucial
architecture behind
Intel and ARM. RISC-V
architecture is governed by
a non-profit organization
called RISC-V International
and it accelerates RISC-V
adoption by working with
the member community.
Since the architecture is new
and free from the legacy
burden the possibilities to
adapt to any applications/
use cases are enormous, and
we can witness RISC-V being
used from tiny IoT sensors to
edge devices to autonomous
robots to space satellites.

RISC-V International develops the ISA
specifications for RISC-V and has a
dedicated security team made up of
volunteers from various parts of the
world, to identify security vulnerabilities,
propose mitigation strategies and produce
specifications for security features and
enhancements. Table 1 summarizes the
roadmap of some of the existing and
upcoming RISC-V security features.

We at Technology Innovation Institute
(TII)/ Secure Systems Research Center
(SSRC) are contributing to development
of security features such as Confidential
Computing, Control Flow Integrity, etc.
We are also chairing a Trusted Computing
Group16, which performs research and
defines specifications for supporting
confidential computing for various device
profiles including IoT, Edge, and Cloud.

Vulnerability Core Feature Threat Mitigation RISC-V Specification
Approved?

Malicious programs accessing other
programs memory

PMP Memory access control policy for
isolation among programs Yes

MMU Memory protection via multi-level
page tables Yes

MPU Can be used on devices without
MMU Yes

Rogue I/O devices accessing illegal
memory

IOPMP Memory access control policy Yes

IOMMU Memory protection via multi-level
page tables for I/O devices ETA ~Q4 2022

Malicious programs accessing the
sensitive memory of application
software

TEE
Providing a hardware-based
isolated environment to keep
sensitive data

Yes

Confidential Computing

Providing multiple hardware-
based isolated environments
to keep various sensitive data’s
confidentiality and integrity
protected plus encryption of
memory to prevent physical
memory attacks

ETA ~Q4 2022

Malicious programs exploiting
software defects, pointer, memory
vulnerabilities to leak secrets

CHERI

Capabilities based mechanism
for pointer protection, fine-
grained memory protection,
and fine-grained software
compartmentalization

TBD

Malicious programs performing
control flow hijack via software
buffer overflow, COP, JOP attacks

CFI Via shadow stack and new ISA for
function call labels ETA ~Q4 2022

Timing, power and other side-
channel attacks to steal sensitive
data

Side-channel Safety

Microarchitecture review and
implementation that is side-channel
safe. fence.t & sec.flush are 2
instructions proposed for this

TBD

High level summary of existing and planned Security features inside RISC-V Processor Core

Table 1: Existing and planned Security features inside RISC-V Processor Core

13

Zero Trust Secure RISC-V System

TII Technology Innovation Institute12

PMP = Physical Memory Protection
MMU = Memory Management Unit
IOPMP = IO PMP
IOMMU = IO MMU
TEE = Trusted Execution Environment
TZ = Trust Zone from ARM
Realms = Confidential Computing
from ARM
CHERI = Capability Hardware
Enhanced RISC Instructions
CFI = Control Flow Integrity
H-Extn = Hypervisor Extension
PQC = Post Quantum Crypto
COP = Call Oriented Programming
JOP = Jump Oriented Programming

16 	 “RISC-V Trusted Computing SIG.” https://lists.riscv.org/g/sig-trusted-computing

Applying Zero Trust to RISC-V Systems

TII/ SSRC security
researchers along with
our research partners
have been exploring ways
to systematically weave
Zero Trust capabilities
into every level of silicon
hardware/ software design,
by following the “Trust
nobody” philosophy. Zero
Trust requires the ability to
(1) detect vulnerabilities
when they occur (2) resist
known attacks, (3) isolate

the element that causes
the vulnerability, (4) recover
from the attack, and (5)
reconfigure the system
so that it can continue its
mission without or despite a
vulnerable component.
We shall describe some
of the key techniques we
are currently working on,
categorized into various
levels of system stack:
1) Platform level, 2) SoC
level, 3) CPU level, and 4)
Software level.

15

Zero Trust Secure RISC-V System

TII Technology Innovation Institute14

1 Zero Trust at the Platform level

1a Component-to-Component Mutual Trust

The protocol running on the platform
(initiator) challenges any new hardware
component (responder) connected to the
system. For example, if someone replaced
a camera, GPS receiver, or motor in a drone,
the platform would verify their authenticity
using this protocol using public key
cryptography certificates.

The components mentioned above are
typically active components that might
have some compute capacity and key
storage to actively participate in the above-
mentioned message exchange protocols.
We are also actively looking to adapt these
multi tenant host VM environments, to
low-energy passive components such as
low-power sensors that lack computing
horsepower for performing cryptographic
operations, storage, etc.

Zero Trust principles used:
Verify Explicitly, Assume
Breach

Today’s approach to
platform design assumes
components (ex: GPS, motor
controller, PCI devices,
etc) on the platform/
motherboard by default
to be trusted based on the
physical connectivity and
often messages arriving
on a hardware bus are also
assumed to be legitimate.
This approach leaves behind
serious vulnerabilities if
malicious actors find ways
to penetrate the hardware
supply chain.

One promising countermeasure is to adopt
secure collaboration between components
in hardware similar to how TLS and
HTTPS secure web transactions, where
components can mutually identify each
other, authenticate each other, establish
secure connections and measure the
firmware. This could protect the intellectual
property in the silicon industry and mitigate
physical attacks and illegal firmware
updates.

We are exploring various approaches
to establish secure sessions between
various components on the platform and
we found there are already two industry
standards available to establish secure
communication between two endpoints
(say a platform and a component) such
as the Distributed Management Task
Force’s (DMTF) Security Protocol and Data
Model17 (SPDM) specification and the
PCI-SIG Integrity and Data Encryption18
(IDE) specification to establish secure
communication at physical buses or
links, which we would like to leverage and
optimize to support our component-to-
component mutual trust establishment.
In this scheme, the platform does not
communicate with any on-system
components/ chips until it establishes
trust as shown in Figure 2. This could allow
system designers to securely integrate off-
the-shelf or custom components into their
systems.

Platform
(Initiator)

Component
(Responder)

Request Certificate

Certificate

Challenge

Response

Request Measurement

Measurement

Keys

Mutual Authentication

Data exchange

Identification

Authentication

Measurement

Key Exchange

Secure Session

Figure 2: Two endpoints establish mutual authentication and encrypted communication

17

Zero Trust Secure RISC-V System

TII Technology Innovation Institute16

17	 “Security Protocol and Data Model Specification.” https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.1.pdf
18	 “Integrity and Data Encryption.” https://pcisig.com/sites/default/files/files/PCIe%20Security%20Webinar_Aug%202020_PDF.pdf

1b Efficient Redundancy for Fault Tolerance

that uses only 2 redundant modules
executing the same code in parallel
and a voting aggregator to detect a
potential malfunction or failure saves
on power, size, weight, etc., but cannot
recover from a fault. Some existing fault
recovery mechanisms are

a	 Checkpointing with roll-back technique:
instead of comparing outputs of each
module at every instruction, it only
takes periodic snapshots of the good
state of execution, so whenever a
fault has encountered the execution
can roll-back to a recent snapshot.
Implementing such a mechanism
for real-time systems can be quite
challenging and may even harm
functionality; e.g., performing a roll-
back can create a delay that may cause
drones to crash while recovering from
the fault.

b	 Roll-forward technique19: allows both
modules to continue executing their
task speculatively, and power up
temporally a third module that can
judge which of the other two modules
is faulty. Once the fault is detected, the
faulty module would roll-forward to
the state of the other module, thereby
recovering from the fault.

We are exploring approaches to leveraging
and optimizing some of the above
techniques and also coming up with new
schemes to meet the requirements for
systems such as drones, having real-time
constraints and resource constraints such
as power, weight, battery capacity, etc. In
order to minimize the overheads of DMR
such as 1) additional latency caused by roll-
back, and 2) the need for a third temporary
module, we are considering approaches,
such as combining the roll-back and roll-
forward techniques together.

Zero Trust principles used:
Fail Securely

As per the report
from International
Technology Roadmap for
Semiconductors (ITRS), the
reliability of Integrated
Circuits (IC) has become
a key challenge owing to
the technological issues
posed by the shrinking
process nodes, sensitivity
to external influences such
as radiation-related effects
(radioactive decay or cosmic
rays), high temperature,
electromigration, process
variation, transistor aging
(the process of silicon
transistors developing flaws
over time as they are used,

degrading performance and
reliability, and eventually
failing altogether), etc.
Hence, building reliable
and fault-tolerant systems
that are immune to
manufacturing defects and
to transient errors is key to
achieving Zero Trust.

Fault-tolerant system design techniques
have been around for decades, for example
in airplane, space, and medical industries,
enabling a system to continue its intended
operation, possibly at a reduced level,
rather than failing completely, when some
part of the system fails.

Some popular fault-tolerant techniques:

1	 Triple Modular Redundancy (TMR) in
which 3 redundant modules (SoCs on
the platform) execute the same code
in parallel and the result is votted by a
majority-voting aggregator to produce
a single output, and If any one of the
three modules malfunctions or fails,
the other two modules can correct the
fault thereby continuing the intended
operation without failing. It comes at
a cost of 3x power, size, weight, etc,
which is not practical for autonomous
robots such as drones for example, as
its usable battery capacity determines
the usefulness of the drone.

2	 Dual Modular Redundancy (DMR)

19

Zero Trust Secure RISC-V System

TII Technology Innovation Institute18

17	 “Roll-forward recovery.” https://ieeexplore.ieee.org/document/494475

2 Zero Trust at the SoC level

2a Dynamic Hierarchical ML-based Hardware Security

•	 Sensors – provide information
regarding the component at run-time;
e.g., performance and power counters,
reliability counters

•	 Local Control Unit – collects
information from the sensors, validates
measurements with respect to the
current state and detect any deviations,
and take emergency actions upon any
violations. The sensor sampling rate can
be adjusted, for example, based on the
speed of a drone, and the nature of the
sampled signals.

•	 Global Control Unit – Analyses
information received from all local
control units, and executes system-
level policies and actions. As long as
information retrieved from the local
sensors agrees with the predicted
global state, the system considers a
normal mode of operation. If there
is a disagreement with the predicted
global state, it can decide to allow the
operation to continue and to learn
it as a new valid state, or assume an
emergency situation and start the
recovery mechanism.

All these blocks are interconnected
with each other via a dedicated bus
for exchanging commands and data
messages.

Zero Trust principles used:
Fail Securely

With the pace at which
cyberattacks are deployed,
the software/ firmware
ecosystem is well adapted
to respond to security
threats dynamically by the
periodic/ on-demand release
of software upgrades (e.g.,
the updates that we receive
for iPhones, Android phones)
for security mitigations.
But on the hardware side,
this flexibility is limited.
Hardware is designed and
once shipped is expected
to last for 10 of years while
continuously defending
against security attacks,
which is unrealistic hardware
is usually static and
unmodifiable (exceptions
being microcode updates on
X86 systems that have some
capability to fix hardware
security bugs).

We propose a new mechanism by
adding sensors and control units to each
component of the SoC, and a global control
unit with ML algorithms to 1) dynamically
evaluate if a component is under attack
and 2) mitigate the attack by changing
the structure and/or operation mode of the
system so that it could continue to function
under the attack.

As an analogy, the human central nervous
system operates in a hierarchical nature,
for example: when touching a hot object
then an immediate autonomous response
is generated to remove the hand from the
hot object, and only later the information
is processed in the brain to analyze the
situation. Similarly, we use a hierarchical
structure that allows fast, and efficient
responses to immediate threats, and the
use of more sophisticated algorithms for a
deeper holistic analysis.

As described in Figure 3, the following are
the building blocks for this approach

Figure 3: Global and Local Control units with sensors on the SoC

21

Zero Trust Secure RISC-V System

TII Technology Innovation Institute20

CPU

G
lo

ba
l C

on
tr

ol
 U

ni
t

Aceelerators

Network
 on a Chip

(NoC)

Network
Interface

Peripheral
controller

Memory
controller

SRAM

AI

Sensors Local Control Unit

2b Logic Locking

Zero Trust principles used:
Assume Breach, Verify
Explicitly, Fail Securely,
Secure Weak Link

The globalization of
integrated circuit (IC) supply
chain and the emergence of
threats, such as intellectual
property (IP) piracy, reverse
engineering, and hardware
Trojans, have forced
semiconductor companies
to revisit the trust in the
supply chain. Logic locking is
emerging as a popular and
effective countermeasure
against these threats.

Logic locking as described in Figure 4, is a
technique for locking the description of a
chip design (design netlist), which can only
be unlocked with a unique chip-specific
key. Specifically, the design is modified to
add new inputs that expect a “logic locking
key”, to be applied to unlock the original
full chip functionality. This secret key must
be loaded into non-volatile memory after
the chip has been received post-fabrication
by the designer/ company that designed
the chips, as described in Figure 5. Without
the proper key loaded into the chip, it's
basically a non-functional chip. This makes
it harder for a third party to clone the
design or for a contract manufacturer to
profit from making extra copies of the
design.
Logic locking can protect fabless chip
design companies that outsource
fabrication to third-party chip foundries.
For example, an unscrupulous engineer
or hacker that breaks into these systems
might reverse engineer the chip blueprint or
copy and pirate the chip or critical blocks.
Another concern is that these individuals
may also tamper with the chip design
to inject stealthy circuitry to launch a
malicious attack using a hardware trojan. A
third possibility is a fab may produce extra
copies to sell on the grey market. Logic
locking ensures that only authorized users
can activate chips. It can also make it more
challenging to reverse engineer the chip
to pirate the design or insert meaningful
hardware trojans.

Original
netlist

Locked
netlist

RTL
netlist

GDS
II

Masks
Non-

functional
IC

Activation
Functional

IC

IP owner IP owner
IC

design
IC layout

generation
Fabrication Packaging

Inputs OutputsLocked Design

Key inputs

Figure 4: Logic Locking Overview

23

Zero Trust Secure RISC-V System

TII Technology Innovation Institute22

Existing logic locking approaches
incur implementation costs, including
increased area, power consumption, and
performance. Owing to the overhead,
it may be desirable to only apply logic
locking to critical blocks in a targeted
fashion rather than the entire design. For
example, designers may apply logic locking
to security-critical blocks or locations in the
chip that would cripple chip functionality
most effectively.

Chip designers need to consider the
security of the key across the entire
lifecycle - design, activation, and operation
of the protected chip. For example, 1)
hackers may attempt to retrieve the key by
analyzing the chip blueprint stolen from
a fab or a working chip procured from the
marketplace, or 2) an adversary might
simulate the locked design netlist to prune
away the incorrect keys and use machine
learning techniques to hone these attacks,
or 3) an adversary may also probe signals
to find the secret key directly, which are
practically infeasible due to the enormous
time it takes to break the key brute force.

Logic locking, when implemented correctly,
is a proactive and strong defense at chip
designers’ disposal in mitigating chip
supply chain vulnerabilities such as Trojans,
IP piracy, and chip overbuilding. We have
implemented a proof-of-concept for this
defense in our SoC by locking several critical
design blocks on the chip. We are also
enhancing our logic locking tool with the
following new capabilities - 1) the ability to
choose the security-sensitive blocks to lock
and how much to lock depending on the
threat model and PPA (power, performance,
area) targets of the project, and 2)
creating chip specific keys by utilizing the
on-chip PUF (physical unclonable function)
to limit the impact of a leaked key.

Synthesis Netlist

Foundry
(Untrusted)

Original circuit Logic locked circuit with key-input
K1 and K2 fed to key-gates

AA

K1

K2

BB

CC

YY
Keygate

Keygate

Working chip

A
B
C 1 0

Key
register

Locked chip

A
B
C

Key
register

K1 K2

Locked Netlist

DesignerDesigner

ActivationFabrication

Designer

Correct Key
K1 = 1, K2 = 0

K1

f

K2

LockingSynthesis

A A
B B

C C

Ve
ril

og
 D

es
cr

ip
tio

n
f=

(~
A

| ~
B)

 &
 (B

 |
C)

;

Key Gates

Key Bits

Potentially Secure Assets Secure Assets

Figure 5: Logic Locking Flow

25

Zero Trust Secure RISC-V System

TII Technology Innovation Institute24

Ex: -128bit Key

2c Root-of-Trust 2d Concolic Testing for Security Verification

We at TII/ SSRC are extending this RoT
to support improved security or flexibility.
We are connecting two components 1)
TRNG (true random number generator)
to generate random numbers and 2)
PUF (physical unclonable function) to
produce a unique device-bound identity
to the OpenTitan RoT. We are exploring
using the PUF to enable Zero-Touch key
material provisioning by providing unique
chip-specific identities, and further key
materials could be derived from them. We
are also working on a secure mailbox and
a secure API that allows the host system
to use OpenTitan’s trust domain to request
runtime crypto services (e.g., signature
verifications) and critical management
operations required by zero trust practices.
We are also integrating NIST-approved
quantum-safe encryption algorithms such
as Crystals-Dilithium, CRYSTALS-Kyber, etc.,
to strengthen the flows such as secure boot.

We are exploring ways to support parallel
and sequential executions and infer the
security implications of clock cycles on
hardware designs. One benefit of this
approach is that it forms one concrete path
at a time, so it does not suffer from the
scalability issue of formal testing.

As described in Figure 6, our concolic
testing framework accepts as input 1) RTL
(register transfer language) source code for
hardware designs and 2) security properties
extracted from threat model and security
objectives and automatically produces test
cases and test results. Based on the test
results the engineer will be able to identify
and rectify security vulnerabilities.

Let's take an example to put things in
perspective:

Zero Trust principles used:
Secure Weak Link, Defense in
Depth, Separation of Duty

A hardware root of trust
(RoT) provides a set of
security properties that
anchor the security of the
SoC into the hardware and
are fundamental to the
overall security posture of
the system. It is isolated
from all other chip logic by
design.

Zero Trust principles used:
Verify Explicitly, Assume
Breach, Defense in Depth

Chip designers are
increasingly building modern
system-on-chip designs
by leveraging various
pre-verified hardware IPs
(intellectual property -
examples IP: CPU, GPU,
memory controller, etc.
available with source
code) from third parties,
to reduce design and
verification costs and reduce
time to market. However,
the growing reliance on
these third-party vendors
increasingly affects the
security and trustworthiness
of these systems. For
example, a vulnerability in
an IP could be exploited to
insert backdoor trojans or
launch an attack. Various
approaches are being
explored to detect and
inhibit SoC vulnerabilities
systematically.

It is often used to support secure system
boot since it provides a fundamental
mechanism for every connected or
standalone device exposed to potential
threats, upon which the whole security
architecture is built. It is also responsible
for storing and protecting confidential
information and cryptographic keys,
establishing a basic level of trust in the
system. For example, it could check the
authenticity and integrity of early-stage
boot loaders using public key cryptography
algorithms like Rivest-Shamir-Adleman
(RSA).

Among available open-source RoTs such
as OpenTitan20, Caliptra21, etc., we chose
OpenTitan to adapt and customize for our
system security. It is the first open-source
silicon RoT, built with transparency, high-
quality design and verification, flexibility,
and a high level of security.

Zero trust mechanisms in a hardware
system must inherit their trust from the
RoT domain. Various considerations must
be addressed to strike the right balance
between hardening this RoT and providing
flexibility for new applications or encryption
algorithms.

One concern is that untrusted components
could engage in various malicious activities
such as denial-of-service, disruption of
functionality, leaking sensitive information,
reducing battery life, altering sensitive
messages, etc., which could lead to
catastrophic outcomes.

Current industrial practices based on
fuzzing and penetrated tests used to
detect such vulnerabilities incur significant
drawbacks, including needing an expert.
Another approach that uses commercial
functional verification frameworks is also
being explored using simulation or formal
analysis. However, simulation-based
systems struggle to detect corner-case
vulnerabilities, which an adversary can
exploit. Formal tools struggle to support
full-scale SoC since they suffer from state
space explosion.

We are currently exploring a promising
approach that leverages an efficient,
transformative infrastructure based on
concolic testing for detecting exploitable
SoC security bugs and violations at the
source code level. Concolic testing, a
combination of “concrete” plus “symbolic,”
is a semi-formal symbolic execution-based
test generation methodology used to
generate tests to cover a small fraction of
corner cases and rare functional scenarios.

27

Zero Trust Secure RISC-V System

TII Technology Innovation Institute26

20	 “OpenTitan” https://opentitan.org/
21	 “Caliptra” https://www.opencompute.org/documents/caliptra-silicon-rot-services-09012022-pdf

Asset Crypto keys in internal registers

Threat Leakage of secret asset i.e., unencrypted plain text can be retrieved by an attacker.
This violates the confidentiality property of the secure assets of SoC design.

Trigger Condition Asynchronous reset applied to crypto engine

Security Objective Internal register values shall be cleared after any asynchronous reset

Inputs to Concolic Testing Engine:
Security Properties extracted from Threat Model & Security Objective + Assertions + RTL Design

Table 2: Input to Concolic Testing Engine

Security Weakness
Weaknesses in this category are related to system power, voltage, current,
temperature, clocks, system state saving/restoring, and resets at the platform and
SoC level

Violation Type Information leakage

Hardware CWE22 Category Power, Clock, Thermal, and Reset Concerns (CWE-120623)

Test Case Apply asynchronous reset and read contents of the target register where the key is
stored. If the value read is previous content, then the bug is confirmed

Bug Description Registers are not cleared after asynchronous reset

RTL Assertion <<reg1>> r1 = 31’h0000;

Output from Concolic Testing Engine:
Security Reports

Figure 6: RTL-level Concolic Testing Framework

22	 “Common Weakness Enumeration” https://cwe.mitre.org/
23	 “CWE-1206” https://cwe.mitre.org/data/definitions/1206.html

29

Zero Trust Secure RISC-V System

TII Technology Innovation Institute28

Processsor
Documentation

Security
Specifications

Specification
Sentences

Security
Properities

RTL-level
Assertion

Reports

Threat
Model

Security
Objectives

Test CasesRTL Design

CONCOLIC TESTING ENGINE

Properties Assertionss

Table 3: Output from Concolic Testing Framework

2e Future-proofing against Quantum Computer Attacks

NIST has initiated a process of
standardizing several post-quantum
cryptographic (PQC)25 algorithms that
are proven to be resilient to new quantum
attacks. As an example, CRYSTALS-
Dilithium26 is a digital signature scheme
that is strongly secure under chosen
message attacks based on the hardness of
lattice problems, and not based on integer
factoring problem which is susceptible to
quantum computer attacks. The security
notion means that an adversary having
access to a signing oracle cannot produce
a signature of a message whose signature
he hasn't yet seen, nor produce a different
signature of a message that he already saw
signed.

We at TII/SSRC are working on enabling
post-quantum secure boot on top of
OpenTitan RoT. This includes modifying
the boot flow and integrating a hardware
accelerator for the CRYSTALS-Dilithium
algorithm inside the RoT as shown in Figure
7. Via a secure mailbox, we expose APIs for
PQC signing, public-key encryption, etc., to
the host system. In the future when NIST
approves more PQC candidates we shall
add support for them and share it back
with the community.

Zero Trust principles used:
Assume Breach, Secure Weak
Link, Defense in Depth

Quantum computers are still
in their early development.
One concern is that more
capable hardware will be
able to take advantage of
new quantum algorithms to
crack popular cryptography
techniques. For example,
Shor’s algorithm could break
integer factorization and
discrete logarithm-based
cryptography techniques

like RSA and ECC. Grover’s
algorithm imposes a
similar threat to symmetric
cryptography. For today's
ubiquitous RSA encryption
algorithm, a conventional
computer would need about
300 trillion years to crack a
2,048-bit RSA digital key. But
with Shor’s algorithm on a
quantum computer powered
by 4,099 qubits would need
just 10 seconds24. A 1000
logical qubit quantum
computer would be a reality
by end of this decade.

Figure 7: Integration of CRYSTALS-Dilithium accelerator inside OpenTitan RoT

31

Zero Trust Secure RISC-V System

TII Technology Innovation Institute30

24	 “Quantum computers could crack today's encrypted messages.”
https://www.cnet.com/tech/computing/quantum-computers-could-crack-todays-encrypted-messages-thats-a-problem/#:~:text=For%20today's%20ubiquitous%20RSA%20
encryption,just%2010%20seconds%2C%20Wood%20said.

25	 “NIST PQC algorithm candidates” https://csrc.nist.gov/projects/post-quantum-cryptography
26	 “CRYSTALS-Dilithium.” https://pq-crystals.org/dilithium/

FLASH
IBEX
Core

PUF/TRNGS

CRYPTO ROM

CRYSTALS-
Dilithium

OpenTitan

TL-UL

2f Hardware Shielding

One promising alternative we are exploring
is to prevent the signals from being
exposed to the hacker (shielding). This is
similar to how modern systems handle
faulty components by hiding faults from
the real world. A fault becomes a bug only
if the outside world sees it. Similarly, an
internal vulnerability can only be exploited
if seen by hackers. This approach involves
developing a set of primitives that prevent
the signals that may be susceptible to
side-channel attacks from being exposed
externally.

The primitives need to strike the right
balance between obfuscation and
efficiency. For example, one primitive we
have developed adds a random delay in
processing, making it harder for an external
observer to correlate between value and
execution time.27 This can protect the
system against timing attacks. Another
primitive we developed adds extra power
or other measurable signals to chip
emissions during sensitive operations,
making it harder for hackers to find
EMF (electromagnetic field) signals that
correlate with activity. This can reduce the
risk that power traces could be used to
recover sensitive information.

We are developing new and improved
primitives that help protect against
these classes of attacks and a new
security management unit integrated
into the hardware to run these primitives
efficiently. This approach will 1) improve
the protection of the system to manage
known security attacks and 2) provide an
infrastructure to manage future security
attacks which are not known at the design
or even implementation time.

Zero Trust principles used:
Fail Securely, Defense in
Depth

Typical hardware attacks
may involve efforts to
probe chip logic or perform
side-channel analysis to
look for secrets. Existing
mitigation strategies
include randomizing logic,
adding locking mechanisms,
masking logic, and adding
redundant operations.
Speculative execution
attacks put a dangerous new
twist on information leakage

through microarchitectural
side channels. Ordinarily,
programmers can reason
about leakage based on
the program’s semantics
and prevent said leakage
by carefully writing the
program to not pass secrets
to covert channel-creating
transmitter instructions,
such as branches and loads.
Speculative execution
breaks this defense because
a transmitter might miss-
speculatively execute with
a secret operand even if it
can never execute with said
operand in valid executions.

33

Zero Trust Secure RISC-V System

TII Technology Innovation Institute32

27	 [Men19] A. Mendelson, "Secure Speculative Core," 2019 32nd IEEE International System-on-Chip Conference (SOCC), 2019, pp. 426-431

3 Zero Trust at Processor (RISC-V) Level

3a Deep-Learning based Control Flow Integrity

Zero Trust principles used:
Verify Explicitly, Defense
in Depth, Simplicity, Fail
Securely

Today, a lot of software is
written in memory-unsafe
languages, such as C and
C++, which introduces
memory corruption bugs.
This makes software
vulnerable to attack since
attackers exploit these
bugs to make the software
misbehave. Modern
Operating Systems (OSs)
and microprocessors are
equipped with security
mechanisms to protect
against some classes of
attacks. However, these
mechanisms cannot defend
against all attack classes.
In particular, Code Reuse
Attacks (CRA), which re-
uses pre-existing software
for malicious purposes, is
an important threat that is
difficult to protect against.

Computer security exploits like Return-
Oriented Programming (ROP)28 and Jump-
Oriented Programming (JOP) hijack the
normal program flow to execute carefully
crafted machine instructions. These
techniques take advantage of software
flaws, such as out-of-bound buffer writes or
code pointer overwrites, to alter the control
flow of the software run by the core.

Control-Flow Integrity29 (CFI) detects this
malicious code from redirecting normal
program flow and helps mitigate it. CFI
protects both the forward edge and the
backward edge of the program control flow.

•	 Forward edge protection: Carefully
crafted gadgets could be introduced
to alter indirect branch targets in the
victim code, for which landing pads or
labels act as a mitigation technique
that restricts indirect branch targets to
limited addresses that are pre-labeled
for forward edge integrity protection.

•	 Backward edge protection: Buffer
overflow attack or code injection attack
could corrupt the call stack thereby
causing the victim code to return to
invalid addresses, for which a shadow
call stack is a popular mitigation
mechanism for backward edge integrity
protection.

35

Zero Trust Secure RISC-V System

TII Technology Innovation Institute34

28	 “Return Oriented Programming” https://en.wikipedia.org/wiki/Return-oriented_programming
29	 “A Survey of Hardware-based Control Flow Integrity” https://arxiv.org/ftp/arxiv/papers/1706/1706.07257.pdf

Technique Forward Edge Backward
Edge

Memory
Overhead

Runtime
Overhead

Architectural
Modifications

Code Pointer
Integrity

Probabilistic Probabilistic Minor

Acceptable
(for only code
pointers)

Major
(requires
cryptographic
accelerator)

Memory Tagging Probabilistic Probabilistic Noticeable Minor

Major
(requires tag
cache)

Shadow Stack +
Landing pads

Fine grained Total Minor Minor

Modest
(requires ISA
and MMU
changes)

Comparison of some popular CFI techniques available

30	 “Hardware CFI Techniques”
https://docs.google.com/document/d/1QrqfWbEuY3X8yPll-udMLo0YCLPxWZC2wsw2IJ_bohs/edit

Table 4: Popular and existing CFI mechanisms 30

RISC-V security community recently has
recommended control-flow integrity
support using shadow stacks and landing
pads due to its low memory, runtime
overheads with modest architectural
extensions to the CPU (ISA extensions and
compiler adaptations).

We are currently exploring to enhance
this landscape further with a promising
approach with deep learning as described
in Figure 8, where control-flow related
signals and microarchitectural (uArch)
events from the RISC-V Core, data from
sensors (power and performance counters)
are extracted, and exported to a train
a neural hardware monitor to detect
malicious control flow patterns. Later on
the actual target device, the neural monitor
performs inferencing to detect faults
and report to the Core, for the handling
of control flow violations. We propose to
redesign the RISC-V CPU decoder, the
control pipeline, potential ISA extensions,
and the compiler toolchain extensions.

Figure 8: ML-based Control Flow Integrity Architecture

37

Zero Trust Secure RISC-V System

TII Technology Innovation Institute36

Sensors

Neural CFI
Monitor

En
co

di
ng

Data

D
ec

od
in

g

RISC-V Core

uArch Events

Fa
ul

t

3b Hypervisor Support for Isolation

The RISC-V specification has 4 privilege
modes 1) M-mode is the highest privilege
mode where trusted firmware runs, 2)
new HS-mode which is introduced to
support a hypervisor, 3) S-mode to host
an operating system and 4) U-mode
for user/ applications. With hypervisor
extension31 the supervisor mode is modified
to a hypervisor-extended supervisor
mode (HS-mode), which is orthogonal to
the new virtual supervisor mode (VS-
mode) and virtual user mode (VU-mode),
and therefore can easily accommodate
different hypervisor architectures. The
RISC-V security committee has ratified
the hypervisor extensions specification
1.0 version and we have implemented
the feature on a RISC-V CVA632 CPU and
contributed it back to OpenHW Group
for anyone to download and use. We are
also actively contributing to developing
the specifications for new features
such as the RISC-V Advanced Interrupt
Architecture (AIA) and RISC-V I/O Memory
Management Unit (IOMMU).

Zero Trust principles used:
Least Privilege, Separation of
Duty, Defense in Depth

Virtualization is a technique
that offers temporal
and spatial isolation
among various processes/
applications by using a
software layer beneath the
operating system, called a
hypervisor. The hypervisor
allows hosting one or more
Virtual Machines (VMs)
on the same platform.
This approach improves
security by making it easier
to standardize application
and OS code and enforcing
isolation across apps and
their data. This also makes it
possible to efficiently share
the underlying hardware
to improve utilization
and enhance software
modularity and flexibility.

Virtualization technology plays a crucial
role in several aspects of the zero-trust
vision, such as 1) the rule of least privilege,
2) separation of duty and 3) defense
in depth. A new privileged hypervisor
mode for RISC-V enables the separation
and segregation of security-critical
tasks from non-critical ones to simplify
implementing the rule of least privilege.
It also makes it easier to decompose and
compartmentalize different subsystems in
specific virtual machines to help enforce
separation of duty. It also adds a new layer
of defense for the overall defense-in-depth
strategy.

In Figure 9, we describe an overview of
how legacy software architecture can be
modularized with hypervisor capability,
where each of the applications could
be isolated from each other and the
underlying hardware for security and
reliability. For example, in a drone usecase
let's say the networking proxy has crashed
due to some fault injection attack, it will be
contained within the networking VM and
will not bring down the whole system, and
a restart of the networking VM alone could
fix the problem. The drone could be offline
and hovering for a period of time until the
network connection is restored again.

Figure 9: Hypervisor Isolation Architecture

39

Zero Trust Secure RISC-V System

TII Technology Innovation Institute38

31	 “RISC-V Hypervisor Extensions” https://lists.riscv.org/g/tech-privileged/topic/80346318
32	 “RISC-V CVA6 CPU” https://github.com/openhwgroup/cva6

N/W Proxy

HOS

N/W Proxy

Networking
VM

Hardened OS (HOS)

Hardened Hypervisor

Secure Firmware

Secure Firmware

Hardware (RISC-V)

Hardware (RISC-V, Memory Safety)

Memory

Memory

PKCS#11

HOS

PKCS#11

Security
VM

Path Plan

HOS

Path Plan

Mission
VM

Video
Encode

HOS

Video
Encode

Multimedia
VM

LE
SS

 IS
O

LA
TI

O
N

IS
O

LA
TI

O
N

LE
SS

 IS
O

LA
TI

O
N

IS
O

LA
TI

O
N

LE
SS

 IS
O

LA
TI

O
N

IS
O

LA
TI

O
N

3c Capabilities-based Hardware Architecture (CHERI)

The industry has started implementing
CHERI on research platforms, such as
ARM’s Morello program. The RISC-V
security committee has newly created a
CHERI special interest group to collaborate
with security experts to analyze and
explore possibilities of standardizing CHERI
ISA into the RISC-V ISA.

We are exploring ways of combining
1) hardware virtualization, 2) CHERI
architecture, 3) TEE (trusted execution
environment), and 4) microkernels to
balance tradeoffs in performance, power,
code size, security, and programming
complexity by utilizing the best from each
architecture for improving RISC-V security
even further.

Zero Trust principles used:
Least Privilege, Separation
of Duty, Defense in Depth,
Complete Mediation, Least
Common Mechanism,
Secure the Weakest Link

CHERI (Capability
Hardware Enhanced RISC
Instructions)33 extends
conventional hardware
Instruction-Set Architectures
(ISAs) with new architectural
features to enable fine-
grained memory protection
and highly scalable software
compartmentalization.
The CHERI memory-
protection features allow
historically memory-unsafe
programming languages
such as C and C++ to
be adapted to provide
strong, compatible, and

efficient protection against
many currently widely
exploited vulnerabilities.
The CHERI scalable
compartmentalization
features enable the fine-
grained decomposition
of operating-system (OS)
and application code, to
limit the effects of security
vulnerabilities in ways that
are not supported by current
architectures.

CHERI has the potential to radically change
the way we build security on processors in
the future. It automatically enforces several
Zero Trust principles at the hardware level,
including complete mediation, rule of
least privilege, separation of duty, least
common mechanism, secure the weakest
link, and defense-in-depth. It could even
defend against control flow attacks such as
ROP/ JOP attacks that we had discussed in
chapter 3.a., and hence some of the other
techniques could become redundant with
CHERI.

41

Zero Trust Secure RISC-V System

TII Technology Innovation Institute40

33	 “CHERI Architecture”
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html#:~:text=CHERI%2DRISC%2DV%20is%20a,extended%20version%20of%20ARMv8%2DA.

4 Zero Trust at the Software level
4a Confidential Computing

computation in a hardware-
based or virtualized Trusted
Execution Environment
(TEE). This protects data
confidentiality, data
integrity, and code integrity.

of enclaves, which can only support 13
enclaves. Similarly, the enclave number of
Sanctum35 is also restricted by the number
of isolated DRAM regions. TIMBER-V36
extends the RISC-V ISA to run an unlimited
number of enclaves, but it incurs non-trivial
overhead (25.2% on average) and does not
consider memory integrity protection.

Penglai proposes new hardware extensions
like Mountable Merkle Tree and Guarded
Page Tables to achieve scalable protection
(up to 1000 enclaves).

We at TII/ SSRC have collaborated
with the RISC-V.org security horizontal
committee to form a Trusted Computing
Group to focus specifically on the problem
of enabling confidential computing37 on
RISC-V platforms. We analyzed the threat
model38 and are in the process of defining
a scalable and compatible confidential
computing model. Initial proposals as
described in Figure 11, prescribe a software-
based architecture without any RISC-V
instruction set extensions and following
industry standard attestation protocols
such as Internet Engineering Task Force
(IETF) Remote ATtestation ProcedureS
(RATS)39 or Trusted Computing Group
(TCG) DICE40 attestation architecture. After
performance evaluation, we would consider
adding new ISA extensions and registers
for this feature.

Zero Trust principles used:
Least Privilege, Separation
of Duty, Defense in Depth,
Secure Weak Link

Confidential computing can protect the
security of data, the integrity of the
data, and the code that processes the
data, to ensure apps perform the correct
computation. All three elements of data
confidentiality, data integrity, and code
integrity can help dramatically simplify the
creation of zero-trust architectures, without
any uncertainty from operating systems,
hypervisors, or other applications.

The vulnerability of data-in-use has gotten
the attention of attackers who now have
been targeting data, including high-profile
memory scraping, such as the Target
breach in 2013, and CPU-side-channel
attacks. In addition, the triton attack in
2017 and the Ukraine power grid attack
in 2015 are only two of several high-
profile attacks on data in use involving
malware injection. The protection of
data and applications during execution is
increasingly important and must be part of
the overall defense strategy.

This is why we need Confidential
Computing.

Traditionally higher privileged OS/
Hypervisors with their right to manage
resources also have full access to
application memory. As a result, any attack
on OS/ Hypervisor will open a doorway
to application data. So the industry
was focussing on hardening the OS/

Data in all computer
systems can be in
transit (networking), at
rest (storage), or in use
(compute). Confidential
Computing protects data
in use by performing the

Hypervisors. With confidential computing,
we would like to change that paradigm,
where the OS/ Hypervisors are only resource
managers and are denied access to
application memory. Now the application
only needs to trust the hardware not OS/
Hypervisors thereby shrinking the TCB
(Trusted Computing Base).

Intel demonstrated the first practical,
confidential computing architecture with
the Intel SGX and Intel TDX architectures.
Arm followed with their ARM Realms
technology built on top of prior ARM
TrustZone technology and virtualization
technology. AMD also offers a competing
Confidential VM technology.

There are several recent research
contributions to RISC-V such as Keystone
which implements enclave memory
isolation by leveraging the PMP (Physical
Memory Protection) mechanism of RISC-V,
which includes a set of paired registers to
indicate physical memory regions as well
as their access permissions. However, the
number of enclaves in Keystone is restricted
by the number of PMP regions (up to 16).
In order to defend against physical attacks,
Keystone leverages on-chip computing,
which is costly due to the restricted on-chip
RAM. CURE34 adopts enclave ID-based
access control for customizable enclaves.
It utilizes a hardware arbiter to record
contiguous physical memory regions

Figure 10: Data protection at rest, in transit and in use

Data at rest

Encrypt unactive data when stored in blob
storage, database, etc.

Existing encryption Confidential computing

Data in transit

Encrypt data that is flowing between
untrusted public or private networks

Data in use

Protect/encrypt data that is in use, while in
RAM, and during computation

43

Zero Trust Secure RISC-V System

TII Technology Innovation Institute42

34	 “CURE: A Security Architecture with CUstomizable and Resilient Enclaves” https://www.usenix.org/system/files/sec21summer_bahmani.pdf
35	 “Sanctum Secure Processor” https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
36	 “TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V”

https://www.ndss-symposium.org/ndss-paper/timber-v-tag-isolated-memory-bringing-fine-grained-enclaves-to-risc-v/
37	 “RISC-V Confidential Computing Overview” https://docs.google.com/presentation/d/1D6O9VopMXBrPmwZW-IKnXRrwJcVnXlU6ZC_Zkf9qh5E/edit#slide=id.p
38	 “RISC-V Confidential Computing Threat Model” https://docs.google.com/document/d/1TXiuy4ac3hQmEKvtTtM5aFVHLnNKCrYxeRZFYPRq2Xw/edit#heading=h.9yggln8khyd0
39	 “Remote ATtestation ProcedureS” https://datatracker.ietf.org/wg/rats/about/
40	 “DICE Attestation Architecture” https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf

Internet-of-Things (IoT) special case: IoT
devices such as SIM cards, cameras, drones,
smart homes, etc, are resource constrained
in terms of features (example: lack of
paged virtual memory/ MMU, security
privilege rings such as supervisor mode,
etc.) power, thermals, battery capacity,
weight, etc., which brings significant
challenges to implementing/ enhancing
system security. Protection of data at the
source of creation, which are these IoT
devices, is gaining importance nowadays.
We are exploring new and innovative ways
to architect a lightweight implementation
of confidential computing for the IoT class
of devices, produce an IoT confidential
computing specification with the
community and standardize it at RISC-V
International.

45

Zero Trust Secure RISC-V System

TII Technology Innovation Institute44

VM 1

OS

Convidential
VM1

Hypervisor Security Monitor

Secure Firmware

Hardware (RISC-V, Memory Safety)

Memory l

VM 2

OS

Hypervisor

OS

DATA

Code

OSOS

Convidential
VM2

IS
O

LA
TI

O
N

IS
O

LA
TI

O
N

Non-Confidential Side

Attacker tampering
with physical memory

No read/wrtie access

Mitigation through physical memory
confidentiality and integrity protected -
memory encryption engine in SoC

Mitigation through
RISC-V memory
sssafety features -
PMP, MPU, IOPMP,
etc

No read/
write accesss

Confidential Side

Figure 11: RISC-V Confidential Computing Proposed Architecture

4b Capabilities-based Software Architecture (CHERI)

Zero Trust principles used:
Least Privilege, Separation
of Duty, Defense in Depth,
Complete Mediation, Least
Common Mechanism,
Secure the Weakest Link

As previously mentioned,
efforts like CHERI are
exploring ways to implement
better fine-grained security
controls at the hardware
level. Software-based
capabilities complement
these to enhance zero-
trust architectures
using fine-grained
compartmentalization at
the OS level. This approach
needs to consider minimizing
the impact and maximizing
control across capabilities in
middleware and OS libraries.

For decades, designers have used
software capabilities to implement
fine-grained security controls in
microkernels. Now researchers are
exploring ways to retrofit existing
software stacks to leverage CHERI,
for example, 1) CheriRTOS41 provides
efficient and scalable task isolation, fast
and secure inter-task communication,
fine-grained memory safety, and real-
time guarantees, using CHERI hardware
capabilities as the sole protection
mechanism in embedded systems, 2)
CAP-VMs42 implements isolation and
sharing at a finer granularity using
CHERI hardware capabilities.

We are exploring ways to combine
hardware capabilities like CHERI and
advanced software techniques to
compartmentalize software stacks at
multiple levels better. We believe this
will make configuring and enforcing
different security policies/ guarantees
more efficient.

47

Zero Trust Secure RISC-V System

TII Technology Innovation Institute46

41	 Xia et al., “CheriRTOS.” https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201810-iccd2018-cheri-rtos.pdf
42	 “CAP-VM.” https://www.usenix.org/system/files/osdi22-sartakov.pdf

A More Secure Future

TII/ SSRC and its research partners
for the next 2-3 years would perform
research and development on the
security areas as described in this
whitepaper. We are contributing to
RISC-V International, OpenHW.org, and
confidentialcomputing.io organizations,
to collaboratively advance RISC-V
system security and incorporating these
technologies into our research SoC
named “Al Saqr” to enhance the security
posture for autonomous cyber-physical
systems, for example, drones systems.
The deliverables such as RISC-V CPU ISA
extensions, design, and code shall be
made available as open source so that
the rest of the security community shall
reap benefits from our work.

Please reach out if you would like to
partner with us on this journey.

For many decades,
Security was considered
an afterthought. With the
regular onslaught of cyber
attacks on our networks
and systems and their
consequences on data
privacy leading to financial
losses, now security has
taken the driver’s seat in the
industry. The cat-and-mouse
game between system
designers and attackers:
waiting for a new attack to
manifest and then trying to
find mitigation, is a never-
ending game, and so system
designers need to take two
steps forward to retain an
advantage over attackers.
Several leading companies
including TII are adopting
a security-first mindset
and investing in Zero Trust
research to secure our digital
future in the years to come.

The foundation for system security starts
with hardware, as software alone cannot
defend against all threats. The root-of-
trust is a key building block that provides
an anchor point in the hardware to build
levels of security and trust. The adoption
of quantum-resistant cryptography
and incorporation into the secure boot
and other features are essential to
data privacy and security. Confidential
Computing designed for cloud security
is now gaining momentum in the edge/
IoT market segment as well and has its
own challenges to deal with due to the
resource-constrained nature of these
devices. Leveraging the power of deep
learning to harden security features such
as control flow integrity and anomaly
detection is also a growing area of
research. CHERI is another promising
capability that in the next 5 years, has
the potential to hit the mainstream
and even make several other security
features redundant.

Zero Trust Secure RISC-V System

TII Technology Innovation Institute48 49

Zero Trust Secure RISC-V System

TII Technology Innovation Institute50

Avi Mendelson	 mendlson@technion.ac.il	 Technion Israel Institute of Technology
Abdulhadi Shoufan	 abdulhadi.shoufan@ku.ac.ae	 Khalifa University
Kais Belwafi	 kais.belwafi@ku.ac.ae	 Khalifa University
Hussam Al Hamadi	 hussam.alhamadi@ku.ac.ae	 Khalifa University
Ashfaq Ahmed	 ashfaq.ahmed@ku.ac.ae	 Khalifa University
Freddy Gabbay	 freddy.gabbay@gmail.com	 Technion Israel Institute of Technology
Marco Solieri	 marco.solieri@unimore.it	 University of Modena and Reggio Emilia
Sandro Pinto	 sandro.pinto@dei.uminho.pt	 University of Minho
Ozgur Sinanoglu	 ozgursin@nyu.edu	 New York University Abu Dhabi
Rafail Psiakis	 rafail.psiakis@tii.ae	 Technology Innovation Institute
Jari Lukkarila	 jari.lukkarila@tii.ae	 Technology Innovation Institute
Kanad Basu	 kanad.basu@utdallas.edu	 University of Texas at Dallas
Mohamed Hassan	 mohamed.hassan@mcmaster.ca	 McMaster University
Andrea Acquaviva	 andrea.acquaviva@unibo.it	 University of Bologna
Andrea Bartolini	 a.bartolini@unibo.it	 University of Bologna
Francesco Barchi	 francesco.barchi@unibo.it	 University of Bologna
Emanuele Parisi	 emanuele.parisi@unibo.it	 University of Bologna
Davide Rossi	 davide.rossi@unibo.it	 University of Bologna
Suresh Sugumar	 suresh.sugumar@tii.ae	 Technology Innovation Institute
Luca Benini	 luca.benini@unibo.it	 University of Bologna
Marko Bertogna	 marko.bertogna@unimore.it	 University of Modena and Reggio Emilia
Shreekant (Ticky) Thakkar	 shreekant.thakkar@tii.ae	 Technology Innovation Institute

Co-authors

tii.ae

Technology Innovation Institute LLC
P.O. Box 9639
Abu Dhabi, UAE

