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Ghaf Compute Platform

The SSRC Secure Technologies team is focusing their research on enhancing Zero Trust Architecture to scale horizontally 
across Edge HW Platforms (Phones, Drones, Laptops, Communication modules) and vertically across SW platforms 
(Linux, Android, Browser, Applications). The Ghaf platform is a baseline software platform for edge devices, utilizing a 
virtualized architecture for research and product development aiming to achieve the following core objectives: apply 
the general security principles of zero trust within the software architecture, and act as an enabler for Zero Trust 
Architectures within organizations.

Virtualization is one of the core enablers to transform the traditionally monolithic software stack within edge devices 
into isolated components with minimal TCB and clearly defined functionality. The Ghaf platform utilizes a collection 
of virtual machines to define a system. Contrary to the traditional monolithic OS, this concept allows to define and 
run host services in isolated environments, which breaks up the monolithic structure and allows for a modular system 
definition that is customizable for a specific use case. To this end, various applications and guest operating systems can 
be deployed while simultaneously utilizing the platform's features. 

This approach allows the application of zero trust concepts across the platform, and promises developers to choose the 
right building blocks to close in on the optimal balance between security and performance for their solution. Moreover, 
the platform promises to improve the ZTA adoption of organizations by increasing resource control and overall security 
within edge devices.

The vision for the Ghaf platform is to create a virtualized, scalable reference platform that enables the building of 
secure products leveraging trusted, re-usable, and portable software for edge devices. Ultimately, security relies by and 
large on the trustworthiness of the underlying hardware. Silicon vendors often reserve highest system privileges, and 
limit access to security relevant components with proprietary solutions. Thus, the SSRC team works not only to bring 
zero trust principles into software, but eventually into open-source silicon hardware platforms based on RISC-V.

This white paper introduces the Ghaf platform developed by the Secure 
System Research Center (SSRC) of the Technology Innovation Institute 
(TII). The objective of the platform is to provide an edge device 
software architecture that enables key features such as modularity and
scalability through virtualization, support research and development 
of Zero Trust Architecture (ZTA), and allow for low maintenance efforts 
while keeping the main code base stable and secure. The name “Ghaf” 
stems from the Ghaf tree, a highly resilient plant that remains green
even in harsh desert environments.

The term Zero Trust has received broad attention and adoption in the cybersecurity industry after it was first introduced 
in the early 2000s. Since then, it has shifted the paradigm from implicit trust based on physical characteristics towards 
explicit verification utilizing stringent authentication, rule of least privilege, separation of duties, and other core security 
principles. With remote work driving the adoption of Zero Trust Architecture in the last few years across IT systems in 
large enterprises, the underlying principles continue to find more and more adoption in software and hardware designs.

While enterprise security posture has significantly improved with ZTA, the threat exposure remains vast due to the 
large Trusted Computing Base (TCB) of enterprise software, especially in heterogeneous computing environments. 
These challenges reduce the security of the end-to-end solution and significantly increase the cost of developing and 
maintaining a secure product.

05



User VM

Ghaf Compute Platform - Virtualization on the Edge

TII Technology Innovation Institute06

Product Applications 

The choice of the SoC also often dictates 
a majority of the peripheral components 
such as sensors, memories, power 
management units, and displays. This leads 
to a high dependency on the manufacturer 
(vendor-lock) that impacts large parts of 
the supply chain including software security 
updates, but also forces the manufacturers 
to change the secure phone HW even when 
only a specific sub-system change (like 
communication or security) is required. 
Additionally, any vendors’ custom hardware 
solutions such as anti-tamper mechanisms 
or secure microcontrollers further 
complicate the changes and often require 

Modern security hardened smartphones 
are, for the most part, built using 
commercial-off-the-shelf (COTS) 
components, and as secure phones are 
typically not mass market products, device 
manufacturers cannot accommodate 
exclusive manufacturing partnerships. The 
main component is the System-On-Chip 
(SoC), which implements the majority of 
the phone’s functionality. This includes 
application processors, communications 
processors (Modem - 2/3/4/5G, WIFI, 
GPS, Bluetooth), graphics processors, 
media solutions (audio, video, camera), 
security solutions, and peripherals (USB, 
SIM, fingerprint sensors, memories, etc.). 

a costly re-design. Given the relatively 
short life-span of an SoC, the costs involved 
in hardware and software redesign per 
iteration are significant.  

On the software side, secure phone vendors 
deploy additional security hardening 
of the software stack. The fast pace of 
development in the Android software stack 
and the customer’s expectation to receive 
the latest version often result in costly and 
time-consuming efforts. Compared to a 
vanilla Android kernel, the additional code 
base including drivers can take up to 50% 
of a hardware vendor's linux kernel [1]. 
As the bulk of software and intellectual 
property (IP) belong to the SoC vendor, 
device vendors typically spend a majority 
of their efforts on adopting their hardened 
software to the custom phone hardware. 
Secure applications are designed, via their 
interaction with the underlying operating 
systems (Android, iOS), to be reusable. In 
most scenarios, an application continues to 
work when a new version of an operating 
system is released. There are notable 
exceptions where an OS introduces a new 
feature that requires application changes, 
or a bug that breaks the application (e.g., 
power optimization changes). 

Nonetheless, a modularized phone software 
architecture can mitigate a number of the 
challenges described above. Hereby, a key 
concept is to compartmentalize third-party 
dependencies in order to gain security 
control and maintainability. By breaking 
up the monolithic structure, one can move 
insecure, obscure, or untrusted functionality 
such as certain drivers and applications 
into virtual machines in user-space in 
order to increase control of their access to 
security critical parts of the system, and 
potentially reduce the impact of security 

vulnerabilities by restricting the attackers 
lateral movement and make privilege 
escalation more difficult. On the other 
hand, secure custom applications with 
high criticality and security can be equally 
isolated, for example, a secure messenger 
or conferencing app. 

Moreover, even some critical custom 
security functionality such as silent 
switches to turn off camera, microphone, 
and communications that previously may 
have required hardware mechanisms could 
be isolated and controlled without custom 
hardware by separating out the respective 
systems controls. The curious reader may 
have noticed that while an attacker has to 
surpass an additional layer, this isolation 
mechanism defers the problem to the 
hypervisor (e.g., running in highly privileged 
exception level 2 (EL2)). While this is true, 
the hypervisor TCB is much smaller and 
therefore easier to harden and audit, and 
less prone to changes compared to a 
mobile phone OS (e.g., Android). Additional 
security measures may be applied that 
will further reduce the risk of compromise 
compared to a monolithic system. 

Drones are an example of embedded 
devices with specific hardware 
requirements. Contrary to phones, drones 
are safety critical systems that are typically 
running real-time embedded operating 
systems, optimized to account for the 
time constraints of critical in- and outputs. 
One challenge with virtualization on such 
platforms is to guarantee appropriate 
scheduling to minimize the latency for 
interrupts and context switches, e.g., 
between threads. Thus, time critical 
interrupts must be executed immediately 
and not delayed by the virtualization 
overhead or scheduling.

Moreover, drones and similar devices are 
highly dependent on low latency and often 
high bandwidth communication, further 
increasing the systems constraints. While 
some of these challenges can be solved 
with appropriate hardware, others have to 
be accounted for in the software design. 
Utilizing zero-copy operations and binding 
hardware (e.g., CPU and FPGA cores) to 
specific software stacks are crucial to the 
performance and must be accounted for in 
the architecture. These constraints further 
reduce the application of dynamic policies 
and security monitoring within the software 
stack significantly, demanding further 
research of efficient mechanisms to bring 
these features to the edge.    

Other product applications for the Ghaf 
platform include edge communication 
devices that, for example, are used to 
interconnect or control nodes in edge 
networks. The Ghaf platform architecture 
naturally supports these use cases, 
where the isolation principles allow it to 
deploy numerous security enhancement 
mechanisms. Traffic monitoring and 
inspection for identification of malicious 
internal traffic and detection of adversaries, 
device resource control, data analysis 
and anonymization, to name a few. One 
interesting example is the processing of 
camera data, which has seen growing 
attention due to privacy concerns of the 
collected data which is often required to be 
appropriately anonymized. One solution is 
processing the data in a trusted execution 
environment, e.g., to guarantee compliance 
with data privacy laws and regulations. 
Besides the security benefits of isolating 
data streams and storage, the architecture 
promises to simplify proving adherence to 
data privacy rules and regulations. 

The Ghaf platform development 
is focused on the transition to a 
modular architecture for edge 
devices. Products such as secure 
phones, drones, laptops, and other 
communication devices have unique 
challenges in their respective 
hardware and software ecosystems. 
Enabling the integration of 
individual technology stacks into an 
organizational framework can be a 
challenging task. The Ghaf platform 
is designed to ease this process 
and enable research to overcome a 
number of challenges as discussed in 
the following section.
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Figure 1 Typical devices and infrastructure around the Ghaf platform
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Design Principles

security considerations for the platform are 
necessary: 

• Secure and reliable development,   
 building, distribution, and provisioning 
• Continuous code assessments and audits  
 of the trusted computing base
• Patch management with fast vulnerability  
 identification and update deployment 
• Multi-layered platform security through  
 isolation and resource control 
• Continuous monitoring of the systems  
 health and telemetry 
• Adaptive security system to dynamically  
 adjust security detection and response  
 measures
• Modularized security components for  
 data collection and analysis 
• Integration into ZTA for organizations  
 and their (autonomous) edge systems 
• Application of fine-grained security policy  
 propagation and enforcement   

This non-comprehensive list shows a selection 
of security considerations for the platform. 
SSRC is committed to conduct research and 
publish case studies to assist development 
and improve practical solutions.

Zero Trust

The concepts of Zero Trust have been present 
long before the term “Zero Trust” was invented. 
Early descriptions include the work by the 
publication of the Jericho forum (“Jericho 
Forum Commandments”)[2] motivating to 
move from a perimeter-based security model 
towards individually secured transactions. 
Subsequently, the evolution of the more 
broader concept was introduced as Zero Trust 
by John Kindervag at Forrester [3]. The term 
then became a synonym for the paradigm 
shift from implicit trust in traditional network 
security based on physical location towards 
individual resource validation and access 
control on transaction basis. 

In essence, a Zero Trust Architecture 
enforces proven security principles by 
removing implicit trust boundaries. This 
concept does not only apply to network 
security, but to all areas of information 
technologies. In order to apply these 
principles of explicit resource control 
to software platforms, the historically 
monolithic structure and static policy 
enforcement must be re-evaluated. 
The idea of resource isolation through 
virtualization is well known and has 
seen wide adoption especially in cloud 
environments. Due to a number of 
factors including resource constraints 
and technology support, research and 
development is required to bring ZTA to  
the edge.  

There are many concurrent definitions and 
interpretations of ZTA. According to the 
Zero Trust Architecture document by NIST 
(SP - 800-207)[4] , the basic tenets of ZTA 
are 

1) All data sources and computing services  
  are considered resources.
2) All communication is secured regardless  
  of network location.
3) Access to individual enterprise resources  
  is granted on a per-session basis.
4) Access to resources is determined by  
  dynamic policy—including the  
  observable state of client identity,  
  application/service, and the requesting  
  asset—and may include other  
  behavioral and environmental  
  attributes.
5) The enterprise monitors and measures  
  the integrity and security posture of all  
  owned and associated assets.
6) All resource authentication and  
  authorization are dynamic and strictly  
  enforced before access is allowed.
7) The enterprise collects as much  
  information as possible about  
  the current state of assets, network  
  infrastructure and communications and  
  uses it to improve its security posture.

The Ghaf platform aims to apply the 
general security principles of zero trust 
within the software architecture, and act as 
an enabler for Zero Trust Architectures for 
edge devices within organizations.  

Applying Zero Trust Principles

The Ghaf platform applies ZTA tenets by 
isolating and controlling relevant system 
resources. A specific implementation highly 
depends on the hardware capabilities for 
virtualization and its performance impact, 
especially considering available process 
and memory isolation mechanisms. 

Hereby, not only code and data in 
separate security domains, but all system 
components including peripherals are 
considered resources and must be isolated 
and controlled. This is ideally supported 
in hardware by virtualization support and 
I/O memory management units (IOMMU), 
and can be further enhanced by moving 
untrusted code such as peripheral drivers 
into virtualized environments. In many 
use cases the respective hardware support 
for virtualization is limited, which requires 
significant efforts to implement the 
isolation requirements, if at all possible. 
Similar challenges are present in process 
and memory isolation due to memory 
pipelining, cache structures, and a vast 
amount of possible side channels.

Each use case and implementation 
requires a specific security model that 
accounts for respective hardware and 
virtualization support (or lack thereof). An 
example is the virtualization of graphic 
memory, where performance is crucial for 
the user's experience. Lack of appropriate 
hardware support will inadvertently impact 
the security in favour of performance as 
complete memory clearing during context 
switches may not be practically feasible. 
Another example is hardware component 
authentication and attestation, which is 
only possible if supported by the hardware 
supplier, which in many cases is not 
achievable in real-world devices without 
an extensive (and expensive) network of 
hardware suppliers. 

In order to control and monitor 
traffic within a virtualized platform, 
communication between the VMs is a 
crucial part of the systems design and an 
area of active study. Again, considerations 
of performance and security trade-offs 
play an essential role in the design. If, for 
example, sockets are used for inter-VM 
communication a number of concepts such 
as authenticated and protected sessions 
can be implemented, but usually at the 
cost of overhead and resulting performance 
loss. One objective of the platform 
implementation is to minimize these 
losses while simultaneously supporting the 
security functionality. 

Following the tenets of ZTA, enforcement 
of dynamic security policies can be 
implemented as an internal policy 
engine within a specific virtual machine 
with a majority of policy enforcement 
residing in the virtual machine monitor, 
which is a natural location for resource 
control in virtualization. Moreover, 
security functionality such as traffic 
monitoring, attack detection and response 
mechanisms, and resource supervision can 
further be extradited to dedicated virtual 
machines. The extent of dynamic vs. static 
controls to administer system resources is 
another performance critical decision in 
the architecture. While strict monitoring 
and control has obvious security benefits 
and follows the ZTA tenets, it may not be 
efficient or possible due to constraints in 
the system. 

Thus, resource monitoring, data collection, 
attack detection and response, and overall 
policy application with minimal overhead is 
an active area of research in the embedded 
context.

 

Edge platforms deal with an extended 
attack surface: an edge device software 
platform has to anticipate a vast variety 
of environments. Compared to server 
platforms for example, edge devices must 
protect against numerous additional 
threats, particularly attacks in the physical 
domain. While servers are expected to 
be deployed in environments with some 
extent of physical protection, edge devices 
may fall into the hands of an adversary. 
Therefore, hardware attacks such as mis-
use of debug interfaces, probing attacks, 
memory extraction, advanced methods 
such as side-channel analysis and fault 
injection, and many other threats must 
be considered in a edge products’ threat 
model. Many of these threats cannot 
be solved in software alone, but require 
a symbiosis of hardware and software 
mitigations. 

When considering autonomous edge 
systems, a number of additional threats 
are of particular interest that may 
not be as prevalent in other types of 
systems. Common threats are denial 
of service attacks such as wireless 
jamming, exhaustion of resources, and 
physical damage or disruption. Moreover, 
unsupervised and unguarded devices face  
a higher risk of physical attacks.  
A physically or logically compromised 
autonomous system can have more 
severe consequences due to the safety 
implications, and could potentially cause 
physical harm. This increases the need for 
unsupervised self-tests, self-monitoring, 
peer-monitoring, and self-organization 
within the system, requiring advanced 
detection and response mechanisms.   
   
The objective for the Ghaf platform 
security is to anticipate and support 
countermeasures for as many practical 
use cases as possible while offering 
implementation flexibility. Hereby, multiple 

Edge Security

Edge computing exposes organizations to 
a variety of security risks, and these vary 
significantly by individual industry and use 
case - a one-size-fits-all security approach 
will not work. The main difference is the 
exposure of devices and networks to  
physical interference that may not have 
been part of the threat model for many 
organizations in the past.

The security in edge products frequently 
falls short for various reasons; the  
considered threats are unknown or 
too advanced to be adopted into a 
vendor's threat model, the necessary 
countermeasures are too expensive 
or impossible to implement, or simply 
disengagement between development 
teams. Thus, understanding the required 
level of security, designing an appropriate 
threat model and subsequently selecting  
the correct security controls for a specific  
use case is crucial. 

The Ghaf security architecture under 
development by SSRC aims to provide an 
understandable yet comprehensive view 
of security controls in the platform so that 
vendors can make informed decisions 
and adopt the platform for their use case. 
The security architecture and subsequent 
research will be published by SSRC in aseries 
of technical whitepapers. 

Generally, the most critical threat to any 
software platform are remote attacks over 
networks, which are often scalable and easily 
distributed. Even more devastating, as recent 
events have shown, can be the compromise 
of software within the supply chain. While 
these threats are present for all networking 
devices, the security requirements for edge 
devices extend beyond common software 
and networking threats.  
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In addition to mechanisms such as 
attribute-based authentication (e.g., 
behavioral analysis), applications' access 
to both internal and external resources can 
be controlled in the Ghaf platform through 
static and dynamic policies even when 
traditionally highly privileged parts of the 
system are compromised.   

Device: “Continuous real-time 
authentication, inspection, assessment, 
and patching of devices in an enterprise 
are critical functions.”

User: “Organizations need the ability to 
continuously authenticate, authorize, and 
monitor activity patterns to govern users’ 
access and privileges while protecting 
and securing all interactions.”

The application of continuous 
authentication and authorization of 
resources is compelling. An important 
factor is to detect malicious behavior, 
not caused by a genuine user but 
by a malicious actor, e.g., through a 
compromised application. 

Enabling Zero Trust Architecture 
Implementation

The following illustration shows the Zero 
Trust Pillars according to the DoD’s Zero 
Trust Reference Architecture [5].   

In the following, we will briefly look 
into each pillar and highlight some of 
the impacts of a software architecture 
following the ZT security principles, and the 
potential benefits that it can contribute 
to an organization's adoption of the Zero 
Trust Architecture. 

There are numerous mechanisms that 
already allow control of resources within 
edge devices, however, the partition of 
system and application functionality 
into separated compartments enables 
policy enforcement by design. In real-
world devices, it is common and often 
necessary to run untrusted third-party 
applications (or even firmware and 
drivers). The virtualization approach in 
the Ghaf platform can allow granular 
levels of resource access control to user 
data and peripherals within the device. 
Moreover, the architecture allows for the 
implementation of a central low-level 
point for continuous automated inventory 
and telemetry data collection, which is 
fundamental for evaluation in the ZTA’s 
analytics backend and policy decision 
point (PDP). Discrepancies between current 
and previous activity patterns can lead to 
different policies being applied to a device, 
and the virtualization enables dynamic and 
seamless service updates.  

Network/Environment: “Segment (both 
logically and physically), isolate, and 
control the network/environment (on-
premises and off-premises) with granular 
access and policy restrictions.”  

Likewise, granular access and policies 
can be enforced through the isolation 
of any external connections through 
various communication channels (WiFi, 
Bluetooth, USB, etc.) into a separate, 
isolated compartment (see Connection 
VM). This is especially useful for the 
implementation of security functionality 
that may not be natively supported by 
a third-party operating system. Further, 
the Ghaf platform architecture enables 
micro-segmentation of networks, which 
is especially interesting for an application 
landscape with diverse levels of trust. 

Applications and Workload: “Securing 
and properly managing the application 
layer as well as compute containers 
and virtual machines is central to ZT 
adoption.”

A central part of the Ghaf platform 
architecture is to allow the separation 
of applications with different levels of 
trust, e.g., a fully audited application 
and an application with known privacy 
concerns (see also section Cloud-hybrid 
Edge Computing). In addition, several 
approaches are being investigated to 
determine solutions leveraging an optimal 
balance between cloud and local resource 
usage. The platform aims to enable fast 
and efficient integration of local and cloud 
applications.

Data: “A clear understanding of an 
organization’s DAAS is critical for a 
successful implementation of a ZT 
architecture.”

Similar to applications and workloads, 
data residence and protection is highly 
dependent on the specific use case. As 
briefly discussed in the section Product 
Applications, the data security model and 
its implementation depends on a number 
of factors such as connectivity, storage 
capacity, privacy concerns, and isolation 
capabilities. Contrary to monolithic 
designs, virtualized file systems and 
memory isolation capabilities allow an 
individual exposure of data towards guest 
applications, enforced by the hypervisor, 
enabling fine grained control as required 
in the ZTA. The proposed architecture aids 
data isolation by design, allowing to grant 
and remove data access permissions based 
on a variety of available controls through 
policies. 

Visibility and Analytics: “Contextual 
details provide greater understanding 
of performance, behavior and activity 
baseline across other ZT Pillars.”

The isolation and resulting inter-machine 
monitoring capabilities of the Ghaf 
platform allow to capture data streams 
and contextual information that can be 
useful to identify malicious activity as 
well as additional insights into a device's 
telemetry. This enables the deployment of 
analytic services such as advanced intrusion 
detection or continuous authentication by 
allowing to gather contextual information 
at the source. Hereby, the distinguishing 
feature of the Ghaf platform is the possibility 
of unified data collection and analytics 
across different target use cases. While not 
removing the need for OS-level security 
features, a unified interface promises to 
ease integration of collection and analytics 
features into an organization's ZTA, 
independent from a specific software stack.

Automation and Orchestration: “Automate 
manual security processes to take policy-
based actions across the enterprise with 
speed and at scale.”

Enabled by a centralized agent within the 
edge device, security responses (e.g., to 
a zero day vulnerability in an untrusted 
application) can be delivered fast with 
several measures that do not require the 
availability of patches and may have less 
interference with the user's experience.

The Ghaf platform promises to improve 
the automation and orchestration of 
edge devices by providing internal policy 
distribution and policy enforcement points 
throughout the platform without the need 
of several agent implementations tailored to 
specific use cases and target platforms.

11
Figure 2: Zero Trust Pillars (source: DOD Zero Trust Reference Architecture[5])
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Trusted Computing Base Build System and Supply Chain

As software supply chain security becomes 
more and more relevant to product security, 
it is necessary to provide mechanisms 
to assert reproducible builds, with a 
transparent chain from source code over 
build environment to the final binaries. 
Such a system allows faster analysis of 
not only software bugs, but also security 
vulnerabilities and their impact to a 
product without the need of extensive 
analysis. This approach further reduces the 
efforts required for patching, and allows 
mechanisms for safe fallbacks to secure 
states.

Last but not least, a minimal trusted 
modular code base promises a longer 
life-cycle than complex operating systems 
under heavy development. By removing 
the elevated trust privileges of operating 
systems and proprietary binaries such 
as device drivers, the impact of bugs 
and vulnerabilities are reduced, and 
the platform's most security critical 
components are likely to remain more 
stable. In addition, secure applications 
running on top of a minimal system are 
also expected to require less maintenance 
effort. One potential disadvantage is the 
effort to separate out OS functionality, 
which may require additional development 
resources for productization.

One step into this direction is the move 
towards reproducible builds in the next 
platform generation. Therefore, the 
generation under development uses the 
Nix package manager and flakes [8] 
(an experimental feature at the time of 
writing), which allows pinning of packages 
and source code (e.g., Git or Mercurial 
sources) to their exact version, taking a 
step further into the direction of pure, 
reproducible builds. The Nix ecosystem 
further provides a basis for automated 
vulnerability (CVE) scanning (vulnix [9]) 
and continuous integration (hydra [10]). 
Ultimately, the ambition is to provide not 
only trusted images/binary caches, but also 
a reproducible build environment that can 
be used to independently build, verify, and 
share build results.

The general principle for establishing the 
trusted Ghaf platform code base is to rely 
on audited software and proven security 
modules while carefully evaluating and 
integrating new concepts. The modularized 
platform not only simplifies integration of 
additional security measures, but also to 
facilitate integration of hardware security 
features. Leveraging and contributing 
to open source projects is not only a 
cornerstone for the platform components 
maintainability, but also for the toolchain 
to increase transparency and auditability. 
By providing a hardened code base for 
hypervisor and OS for the various virtual 
machines in the architecture, the Ghaf 
platform leverages security benefits across 
all modules. 

This can be achieved at any point within 
the product's lifecycle. The Executive 
Order 14028 [6], issued by the President’s 
office of the USA has declared that a 
Software Bill Of Materials (SBOM) must be 
provided for all software that is delivered 
to the government. Meanwhile, industry 
proponents of Supply Chain Security 
(SCS) have long started to categorize and 
define standards in this regard. The cross-
industry collaboration Supply-chain Levels 
for Software Artifacts (SLSA) framework 
[7], for example, aims to standardize the 
terminology and the methods to verify and 
deliver software.

One objective of the Ghaf platform 
architecture is to provide developers with a 
trusted code base for the development of 
edge devices while applying ZTA principles 
and simplify its adoption. In line with the 
principle to “never trust and always verify”, 
the code base will be completely open 
source. This allows developers to perform 
security assessments in accordance 
with their supply chain governance 
requirements. To this end, SSRC has started 
to improve their own development process, 
with quality and security assurance in line 
with the SLSA framework and beyond; 
including third-party reviews, automatic 
vulnerability scanning, build environment 
monitoring, and automated SBOM 
generation. 

A main objective of the Ghaf 
platform is to establish a trusted 
computing base to build secure and 
performant edge products. Moving 
traditionally privileged functionality 
into de-privileged domains such as 
EL 0/1 in ARM or Ring 2/3 in x86, the 
security of the hypervisor and related 
functionality becomes ever more 
critical. Thus, a minimal, de-bloated, 
and monitored code base promises 
to limit attack surface, increase 
auditability, and minimize efforts for 
hardening, testing, and maintenance. 

Supply-chain attacks against 
software have become more and 
more prominent and the focus of 
attacks in recent years, with famous 
examples such as Solarwinds, 
Microsoft Exchange server, and 
British Airways payment gateway 
making headlines. In general terms 
supply-chain attacks are a threat 
where malicious or vulnerable 
code is inadvertently included into 
a legitimate product, often by 
infiltration of a third party supplier.

13
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Platform Architecture

The main architectural concept of the Ghaf platform is breaking up the traditional monolithic structure in favour of modularized 
components. Figure 3 displays the components and complexity of a traditional phone architecture. 

15TII Technology Innovation Institute14

The Ghaf platform architecture moves traditional OS functionality into isolated (and if possible less privileged) environments; more 
precisely, into separate virtual machines dedicated for this purpose. These purposefully constructed virtual machines handle important 
system functions such as graphics, communication, storage, security functionality, and other peripherals, orchestrated and controlled by 
the Admin VM. 

In the following sections, we will dive into the architecture and have a closer look into the different compartments and highlight some of 
the architectural benefits and challenges.

Figure 3: Traditional (Android) phone platform architecture Figure 4: Modularized platform architecture
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For each supported kernel version, a 
minimal kernel configuration must be 
determined. As different versions have 
different levels of security patching, a gap 
analysis must be performed to evaluate 
which patches are absent in this specific 
kernel version, and apply these along with 
a selection of additional kernel patches 
to increase security from various Kernel 
hardening programs. Individual kernel 
configurations are created based on the 
specific threat model of the use case, and 
further extended depending on whether 
the kernel is used as hypervisor or Hardened 
OS kernel. Kernel Self-Protection [11] 
mechanisms are one of the core elements 
for kernel security, aiming to passively 
eliminate classes of bugs, methods of 
exploitation, and actively detect and 
respond to malicious actions. With the 
application of runtime kernel protection 
mechanisms, several considerations 
besides performance impact are required. 
One example is the deployment of active 
countermeasures (such as triggering kernel 
panics upon attack detection) which may 
decrease exploitability, but also makes the 
system more vulnerable to denial of service 
attacks.

The first generation of the Ghaf platform 
kernels was built using buildroot, managing 
kernel configurations using kernel 
fragments, which are small configuration 
pieces built into flat kernel config. The 
second generation (Nix-based) can handle 
generated kernel configurations in a NixOS-
specific configuration file for kernel sources 
with out-of-Nix config generation. The Nix 
configuration system cannot handle kernel 
fragments without porting the make files 
and bash-scripts to Nix-language, which 
is part of the on-going work. Nix provides 
powerful mechanisms to overlay and patch 
flat kernel configs including the creation 
of unique cryptographic identifiers for 
kernel binary and modules, supporting the 
software supply chain efforts.

Hardened Hypervisor

The hypervisor, built on the foundation of 
the Kernel-based Virtual Machine (KVM) 
and Virtual Machine Monitor (VMM) are 
the most critical components in the Ghaf 
platform, as they facilitate and enforce 
the virtualization and fulfil respective 
security related functions. The Hardened 
Hypervisor utilizes the Hardened Kernel and 
subsequently a hardened version of the 
KVM. 

The KVM (Kernel-based Virtual Machine) 
is a virtualization module in the Linux 
kernel that allows the kernel to function as 
a hypervisor. As KVM is integrated in the 
Linux kernel, it benefits from reusing Linux 
memory management and CPU scheduling 
functionality, but suffers from the huge TCB 
that comes along with it. The TCB can be 
reduced by isolating certain functionality to 
guest virtual machines and using a pass-
through mechanism. This way the drivers are 
owned by the virtual machines and reduce 
the TCB of the critical host system.

The KVM was originally built for x86 
architecture and later ported to ARM. The 
KVM on ARM implementation has been split 
into the so-called Highvisor and Lowvisor. 
The Highvisor lies in ARMs kernel space 
(EL1) and handles most of the hypervisor 
functionalities. The Lowvisor resides in 
hypervisor mode (EL2) and is responsible 
for enforcing isolation, handling hypervisor 
traps and performing the context execution 
switches between guests and host. On both 
instruction set architectures (ISA) we focus 
on 64-bit systems. RISC-V virtualization 
support is closer to the ARM implementation 
with U- and S-modes mapped to ARM EL0 
and EL1, and M-mode similar to ARM EL3.

There are several projects extending the 
KVM with additional security functionality, 
including Google’s pKVM[12], KVMS[13], 
and SeKVM[14], with the latter aiming 
at formal verification to prove security 
functionality works as defined. The 
hardening objectives for the virtualization 
are mostly to guarantee proper isolation of 
processes and memory, and detection of 
configuration changes. Side channel analysis 
or fault injection resistance in the physical 
domain is typically out of scope for many 
of these projects, due to the high amount 
of effort required as these vulnerabilities 
need to be addressed throughout the 
entire software stack, from hypervisor to 
applications. These threats are applicable 
for embedded edge devices and must 
be considered. The focus however lies on 
the protection against software-based 
vulnerabilities (including micro-architectural 
attacks) as they are often remotely 
exploitable and more easily distributable. 

The project utilizes proven (Linux) security 
modules to counter the various attacks 
towards hypervisor and operating system. 
One active field of research is the handling 
and enforcement of static vs. dynamic 
policies within the system (see also: Admin 
VM). Moreover, the separation of KVMS 
(Lowvisor) into EL2 (on ARM architectures) 
allows to isolate a security relevant part of 
the hypervisor into a higher privileged CPU 
context. As one of the zero trust principles is 
to remove as many implicit trust boundaries 
as possible, a first step is taken into this 
direction for the hypervisor. The KVMS 
attempts to augment the security of the 
traditional KVM architecture by limiting the 
access of the host to guest memory. This is 
achieved through the "host blinding" feature 
and is enforced by the privileged part of 

KVMS (Lowvisor), which leverages multi-level 
address translation to restrict the access 
of the Highvisor to guest memory. The 
applicability of this solution depends on the 
use case as host blinding may impact the 
ability for data collection. 

There are now multiple Virtual Machine 
Monitors (VMMs) utilizing the KVM interface 
including qemu, kvmtool, crosvm, cloud-
hypervisor, and Firecracker, each focusing on 
specific use cases. The majority of popular 
VMMs are based on rust-vmm, a modular 
framework with contributors from Alibaba, 
AWS, Cloud Base, Crowdstrike, Intel, Google, 
Red Hat as well as individual contributors. It 
provides a set of virtualization components 
that any project can use to quickly develop 
virtualization solutions. Using rust-based 
frameworks provides more robust memory 
management compared to C/C++ due to its 
enforcement of memory safety. 

Hardened Kernel 

The Ghaf platform project heavily utilizes 
the Linux kernel. Each underlying hardware 
supports different kernel versions and 
configurations, so it is generally not 
possible to create a singular supported 
master kernel for the Ghaf platform host. 
However, as part of the Hardened OS 
running in the guest virtual machines 
the same up-to-date kernel baseline can 
be used for application virtual machines, 
whereas the specific system virtual 
machines require modifications to adjust 
to the specific use case. Upgrading the 
vendors board support package (BSP) to a 
more recent kernel is beyond feasible for 
most projects. Similarly, vendor reference 
BSP and HW support for virtualization 
is paramount - with no BSP and HW 
support, this design building on embedded 
virtualization is not possible. Thus, it 
is necessary to adapt each kernel, and 
ultimately build a tool chain to support 
kernel hardening automation for a 
specific hardware platform. A baseline of 
kernel security modules are vital to the 
functionality of the platform and will be 
present in all versions. A variant of this 
design with only a hardened host, when 
HW support is not available, is possible but 
suffers from the limitations of monolithic 
architecture.

17
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In many use cases, the Hardened OS uses 
containers to implement further isolation 
in user space. Containers introduce 
more isolation to operating system 
process boundaries without sacrificing 
performance. Despite the similar name 
to real virtualization, containers cannot 
provide the same security claims. An 
escape from a container can compromise 
the operating system providing the 
container runtime. A hardened container 
approach aims to secure Hardened OS user 
space virtualization using “open industry 
standards around container formats and 
runtimes” - Open Container Initiative (OCI). 
OCI members include major industry key 
players and was established by Docker, 
synonymous with containers, in 2015.   

The primary motivation to utilize 
container runtimes is to ease application 
development, deployment, and portability 
of solutions. It allows developers to use 
tools and interfaces they are familiar with, 
while enabling compartmentalization into 
self-contained environments that can be 
efficiently administrated.  

Container hardening is mainly focused 
on debloating the industry leaders 
container runtime stack to only the open, 
security audited, low-level tool runc “for 
running and spawning” OCI compatible 
containers - including Docker. Ghaf 
platform reference hardened containers 
are run in non-privileged (rootless) mode. 
In addition to runtime security, the OCI 
image specification compliant containers 
in Hardened OS are security audited 
and out-of-system containers cannot be 
installed using the Hardened OS tools. More 
information and benefits of containers can 
be found in the section Application Virtual 
Machines.  

Hardened OS

The Hardened OS is a minimal OS that runs 
in both the host system and the virtual 
machines. Its configuration and modules 
are defined based on the requirements of 
the use case and threat model. Generally, 
lightweight OS components are preferred 
as motivated by the design principles. In 
order to reduce attack surface, many of 
the components receive specific hardening 
and debloating (removal of unused 
functionality) where possible. This concept 
allows for a system that only implements 
the necessary code to run. 

One actively researched concept is the 
LibraryOS approach (e.g., Unikraft [15]) 
to compile all dependencies into a single 
binary. While seemingly in contrast with 
the Ghaf platform philosophy, its usage 
can be very beneficial due to the natural 
de-bloating, dead code elimination, link 
and compile time optimizations, and overall 
very high performance from context-
switch elimination. Additional security 
benefits besides the small code base is 
the removal of system management tools, 
e.g., an attacker cannot access a shell, 
and compiler optimizations and security 
features such as address-space layout 
randomization (ASLR) and control-flow 
integrity (CFI) can be applied consistently 
through the entire stack. The main 
application for it in the Ghaf platform is 
currently envisioned within the Application 
VM space. 
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System Virtual Machines

Ghaf is a modular platform with a 
collection of virtual machines that can be 
configured to define a system. This section 
introduces example systems, the platforms 
System VMs and their functionality. Figure 
5 shows an example headless device with 
no local graphical user interface (GUI).

Virtualization supported hardware 
resources are isolated with a hardened 
hypervisor on the system host. The host 
uses the resources to launch and monitor 
three VMs: Connection VM, secure/trusted 
App VM, and an untrusted App VM. Trust 
levels are indicated with colors between 
blue (trusted) and red (untrusted). 

This example system could be an 
autonomous robot, e.g., a drone. A user can 
monitor the system over secure network 
connection. This kind of a device with 
embedded virtualization is similar to a 
headless cloud application.

Another example system is illustrated in 
Figure 6 where the user interacts with the 
system using a graphical user interface.

Figure 6 adds a Display VM to the 
system for user interaction and isolating 
application use cases with secure chat 
(trusted) and browser (untrusted) from 
each other. In addition to the hardened 
Display VM, the GUI protocol between the 
Display VM and Application VMs is used to 

isolate the VMs from each other and ensure 
no confidential data is leaked when the 
user switches between applications. This 
kind of architecture can be leveraged in 
devices with embedded virtualization such 
as a secure phone, a tablet, or a laptop.

For virtualization of hardware drivers, the 
System VMs can utilize both passthrough 
and paravirtualization, each implying 
different advantages and disadvantages. 

While paravirtualized architectures 
provide better portability, the performance 
constraints are a critical factor. Specific 
implementations for particular hardware 
and use cases will be described in separate 
case studies to be published, showcasing 
the various challenges, solutions, and 
architectural decisions.  

Figure 5: Simple headless edge device use case Figure 6: Simple platform use case with display
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Admin VM

minimum authentication mechanism 
without traffic protection. The 
modularity also allows to deploy traffic 
inspection and analysis for only specific 
use cases, certain security status levels, 
or not at all and can be extradited to 
specifically purposed VMs. 

There are several limiting factors 
to consider as high performance 
requirements for components such 
as GPUs often require direct memory 
access, where monitoring overhead 
for functionality besides simple 
memory boundary checks may not be 
acceptable. 

The Admin VM can propagate security 
and confidence levels as well as 
policies throughout the platform to 
both system and application virtual 
machines. Upon detection of suspicious 
activity, system logs and other data 
collection mechanisms can be enabled, 
for instance, system call tracing in the 
guest for ML-based malware detection, 
which has yielded significant results. On 
the edge device itself, gathering data 
for analytics can be a key enabler to 
detect compromised systems, whereas 
the analytics itself can be implemented 
in the SOAR backend to determine and 
propagate appropriate policies.  

Even though the Admin VM may 
not directly control all resources, it 
can be utilized to administrate the 
different endpoints to enforce policies. 
Monitoring and controlling the traffic 
between guest VMs can be implemented 
via traditional firewalls in case TCP/IP 
based communication is utilized. The 
Admin VM is in charge of these policies, 
and can be extended to function as 
a central communication node if, for 
example, the security plugins require 
packet inspection capabilities 
within the internal network. Internal 
VPNs may be used to enable 
authenticated and protected channels 
between VMs, or can be used as a bare 

Dynamic policy setting, attack detection 
and response, and dynamically scalable 
security measures are active research 
topics. While ML-based detection 
engines appear to yield reasonable 
results, scalable security is of high 
importance due to the performance 
constraints in edge devices. This affects 
data collection mechanisms, narrowed 
down by principal component analysis 
of data sources to limit resource usage, 
and extradition of analysis into the 
cloud (for Analytics Engines, SIEM/
SAOR, and PDP) to reduce workloads 
on the edge device. Note that in use 
cases such as autonomous systems 
this may not be possible, and the 
limited hardware resources have to be 
utilized. Another crucial advantage is 
the possibility to develop unified data 
collection across multiple devices, 
potentially independent from hardware 
and/or software such as different client 
operating systems. Unified analytics for 
Data, Applications, Assets, and Services 
(DAAS) is one of the cornerstones of the 
ZTA. 

One way for the Admin VM to respond 
to attacks is its ability to restart virtual 
machines on the fly, thus re-loading 
and authenticating code and data to 
remove non-persistent compromised 
code (safe fallback mechanism). This 
measure does not solve the underlying 
problem, however, an attacker will 
have to re-run the exploit. A dynamic 
security policy allows to deploy 
additional security measures such as 
cutting I/O connections, enabling more 
stringent code flow integrity or memory 
protection mechanisms, reboot or halt 
the VM to limit the window for and 
extent of data exfiltration. Vulnerable 
virtual machines can ultimately be 
patched on on-the-fly once security 
issues are identified and fixes available.

The Admin VM is used to 
monitor and control system and 
application virtual machines. This 
includes resource monitoring as 
well as functionality to set and 
update policies, thus functioning 
internally as policy engine and 
externally as policy enforcement 
point (PEP) and Endpoint Agent in 
the ZTA. 

23
Figure 7: Device as policy enforcement point in the zero trust architecture (source: ZTRA [5])
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Connection VM 

The Connection VM is responsible 
for controlling I/O interfaces and 
devices such as WiFi, Bluetooth, 
and USB. While each of these 
could be separated into their own 
VMs, some architectures may work 
better using a singular Connection 
VM for performance reasons.

The illustration in Figure 8 showcases 
an instance of a Connection VM, in this 
case handling networking for an Android 
OS. While being controlled by the Admin 
VM, networking can also be turned 
off by the user, e.g., to cut all wireless 
communications (airplane/secure modes). 
Firewall configurations for external traffic 
are controlled by the Admin VM and 
applied within the Connection VM as 
policy enforcement point. The isolation of 
network functionality further facilitates 
micro-segmentation of networks, e.g., to 
compartmentalize traffic streams from 
different resources both internally and 
externally. Alternatively, the network 
resources can be administrated on service 
level in the spirit of zero trust. While all of 
this functionality may be implemented in 
monolithic systems, the platform reinforces 
this concept through its architecture. 

Figure 8: Internal data flow and modules of the Connection VM
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The key functionality of the 
Display VM is to provide graphical 
user interface services. GUI 
services are needed by secure 
chat applications, Cloud Android 
WebRTC client, and other apps. 
The Display VM uses hardened OS 
kernel as baseline and provides 
display services with event 
devices, display, display server, 
compositor, and window manager. 
The Ghaf platform reference 
implementation for Display VM 
started out with containerized 
and secured X11, but has since 
moved to the more performant 
Wayland[16] for streamlined 
memory management and a more 
sleek code base compared to the X 
system.

The Storage VM is responsible to isolate 
user and critical system data and provide 
data at rest protection. The key idea is to 
only expose data to an application/guest 
virtual machine that is required. Facilitated 
by hardware crypto engines, data is 
encrypted at rest, and optionally not stored 
on the device but loaded from a backend 
(see also Cloud-hybrid Edge Computing). 

Although RAM memory is arguably the 
most critical resource of a Guest VM, 
persistent memory also poses a significant 
threat in case of a compromised host. 
Since the persistent storage is required 
by all VMs, in addition to the fact that 
many platforms (e.g., mobile phones) offer 
a single flash peripheral, it is practically 
impossible to dedicate flash to separate 
VMs. As such, disk I/O is handled by the 
host in the current architecture. Considering 
that disk I/O is emulated for guests, a 
direct guest-to-guest attack should not be 
possible without implementation bugs in 
the VMM. A compromised, blinded host 
may be able to indirectly compromise 
a guest through the emulated I/O 
functionality, for example, by modifying 
the executable when the guest attempts 
to map the binary in its memory. There 
are integrity features (e.g., dm-verity) 
that can detect such attacks, up to a 
different degree each, thus requiring guests 
to employ such controls. While these 
mechanisms could potentially be tampered 
with as well, it requires an attacker to 
bypass an additional barrier.  

The Security VM acts as a generic interface 
for hardware or software based security 
environments. Independent on the 
capabilities of the underlying platform, the 
Security VM provides security functionality 
towards virtual machines. This is beneficial 
as several application virtual machines 
require utilization of hardware backed 
mechanisms for key storage, attestation, 
and other cryptographic operations. 
The Security VM implementation thus 
acts as a proxy, which allows it to apply 
fine grained resource access controls. As 
secure key storage and cryptographic 
primitives are highly critical resources, 
this virtual machine plays a key role in the 
platform. The architecture allows several 
different underlying implementations, and 
can make use of hardware based TEEs 
such as TrustZone and SGX, but also as 
proxy for secure elements and enclaves, 
hardware fuses, and proprietary secure 
microcontrollers. In case such hardware is 
unavailable (although highly discouraged), 
software implementations can be used 
to replace the required functionality. The 
ability to use such a dedicated virtual 
machine and respective functionality highly 
depends on the use case.

27

Display VM Storage VMSecurity VM

The complex Virtio Wayland architecture 
and various implementation options 
and their specific vulnerabilities require 
significant efforts for security assessment 
and hardening. Due to the fact that the 
Display VM effectively communicates with 
most applications, secure and insecure, 
the Display VM is a high risk component. 
Further, varying GPU virtualization support 
and direct memory access requirements 
decrease the amount of control that can be 
exercised efficiently.

Figure 9: Simplified X-system and Wayland architecture (source: [16])
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Application VMs (aka Guest VMs) 
can technically run anything - from 
Android OS to a simple headless 
offline application. As we have seen, 
the architecture is built to reduce 
the exposure of each (potentially 
compromised) application to the system 
(guest-to-host), to other applications 
(guest-to-guest), and to itself through 
the host or other guests. Further, 
measures have been taken to reduce 
exposure of the guests (host-to-guest, 
see Hardened Hypervisor).  
 
Trusted applications can be built on 
the basis of Hardened OS and utilize 
containerization for further isolation. 
Containerized applications offer security 
advantages over regular user processes 
due to user namespaces and control 
groups. They provide an additional 
layer of isolation when running several 
applications in parallel. Containers help 
alleviate some classes of attacks that 
Linux applications usually suffer from, 
such as 

• sharing of filesystem between   
 processes leading to attacks through  
 path handling, race conditions and   
 abuse of file permissions,
• unconstrained sharing of system   
 resources that can allow an  
 application to exhaust resources of  
 the whole system,
• access through local network  
 (localhost), which is generally  
 overlooked by system administrators  
 and tends to be less restricted than  
 access from/to external networks,
• abuse of the Linux DAC permission  
 system, especially SUID binaries  
 which are a very common target for  
 unprivileged malicious applications  
 looking to escalate privileges on the  
 host system, and
• exploit of kernel-user interfaces like  
 procfs, ptrace, and various system  
 calls.

Sandboxing through namespaces 
gives applications an isolated view of 
the system, which is primarily used 
by container engines for the purpose 
of replicating runtime environments 
across different machines. It also 
has the advantageous consequence 
of preventing most attacks cited 
above: each container has a unique 
filesystem, network interface, PID and 
DAC credentials as a result of grouping 
processes in several user namespaces. 
The issue of overusing resources is 
largely solved by cgroups and seccomp 
policies preventing most dangerous 
system calls.

Introducing untrusted and 
potentially dangerous third-party 
applications to a security solution 
exposes all protected assets to 
new threats. User, system, and 
organizational data could be at 
risk through insecure third-party 
apps and services by introducing 
individual remote attack vectors 
and requiring wide access to the 
system's resources to function 
and opening the attack surface 
of the system with functional 
dependencies. All of these should 
be mitigated with full isolation, 
preferably backed by hardware, to 
prevent compromising the security 
of the system. While application 
level vulnerabilities have to be 
addressed within the application 
itself, the platform design 
attempts to mitigate lateral 
movement and reduce attack 
surface. 
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Third party services, especially social media 
services, introduce new threats against 
user identity and user privacy. There is 
nothing that can be done to prevent a 
user from compromising their privacy or 
identity via the social media service, for 
instance registering with their own name, 
posting publicly, or falling victim to identity 
theft due to a weak password. However, 
the application can be isolated so that it 
has no access (or access to fake) device 
identity, user history/log data, recording 
devices, location services, or other 
potentially compromising resources. These 
isolation and privacy countermeasures 
could be deployed in the device, in the 
back-end with remote access to the third 
party application, or a combination of 
both. Tracking and digital fingerprinting is 
efficiently mitigated by running the third 
party application in the back-end in an 
isolated disposable context, if so required.

The Ghaf platform aims to make 
integration of cloud services easy. Besides 
the capability to deploy security policies 
to edge devices, one concept that has 
been extensively explored is to use a 
containerized Android OS in the cloud 
(using Google's cuttlefish [17]) while 
running an isolated application on the 
phone to use the hardware. The security 
and maintenance benefits are rather 
obvious, however, this solution has limits 
in its usability as it requires permanent 
connectivity. 
  
For this reason, cloud-hybrid solutions 
are being explored and tested that store 
data in the cloud and load on demand, 
or run specific applications remotely. This 
can encompass both trusted applications 
and untrusted or privacy concerning 
applications, e.g., for anonymization or 
additional security monitoring utilizing the 
abundant cloud resources. 

With the Ghaf platform, SSRC Secure Technologies is building a reference architecture and platform for developing 
secure edge devices. With the focus on scalability and security, this platform heavily utilizes virtualization to enable 
isolation within the software architecture that promises fine grained security control and low(er) maintenance effort. 

Besides significant engineering efforts to solidify the basic building blocks that enable fast adoption to different 
hardware, active research areas include efficient implementations for dynamic policy application as well as attack 
detection and response mechanisms to enable scalable security measures. Hereby, the architecture supports the 
implementation of the ZTA’s software defined perimeter, and enables the unified collection of device inventory and 
telemetry data for analysis and policy decisions in a zero trust architecture. 

The efficient resource sharing between edge device and cloud backends is actively researched, impacting both data 
and services. The platform architecture is designed to simplify this resource management, however, hardware and 
connectivity constraints require optimized solutions depending on the product use case. 
 
As can be seen, the Ghaf platform architecture aims to bring the well known security benefits of virtualization and 
compartmentalization from the cloud to the edge, and facilitate the implementation of zero trust architectures. 
SSRC aims to contribute to this space by continuing to support open source projects as well as publishing a series of 
technical whitepapers about our research. 

31

Ghaf Compute Platform - Virtualization on the Edge

TII Technology Innovation Institute30

Cloud-hybrid Edge Computing Conclusion



Terminology Description/Definition

PEP

Policy Enforcement Point

This system is responsible for enabling, monitoring, and eventually terminating connections 
between a subject and an enterprise resource. The PEP communicates with the Policy 
Administrator (PA) to forward requests and/or receive policy updates from the PA. This is a 
single logical component in ZTA but may be broken into two different components: the client 
(e.g., agent on a laptop) and resource side (e.g., gateway component in front of resource that 
controls access) or a single portal component that acts as a gatekeeper for communication 
paths.

SBOM Software Bill Of Materials

SIEM Security Incident and Event Manager 

SLOC Source lines of code

SOAR Security Orchestration, Automation, and Response

SSRC Secure Systems Research Center

TCB Trusted Computing Base

TEE Trusted Execution Environment

VM Virtual Machine

VMM Virtual Machine Monitor

VPN Virtual Private Network

ZT Zero Trust 

ZTA Zero Trust Architecture
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Terminology Description/Definition

Analytics Information resulting from the systematic analysis of data or statistics. This analysis includes 
discovering, interpreting, and communicating significant patterns in data.

ASLR Address space layout randomization

BSP Board Support Package

CFI Code flow integrity

COTS Commercial off the shelf

CVE Common Vulnerabilities and Exposures

DAAS Data, Applications, Assets, Services

EL Exception Level

Endpoint Agent Client software installed on a network endpoint that communicates
or is controlled by a centralized system.

FDE Full Disk Encryption

FPGA Field-programmable gate array

GPU Graphics processing unit

KVM Kernel-based Virtual Machine

ML Machine Learning

MMU Memory Management Unit

OCI Open Container Initiative

Policy Statements, rules or assertions that specify the correct or expected behavior of an entity. 

PDP

Policy Decision Point
Mechanism that examines requests to access resources, and compares them to the policy 
that applies to all requests for accessing that resource to determine whether specific access 
should be granted to the particular requester who issued the request under consideration.
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